CHAPTER

One-dimensional Steady
State Heat Conduction
with Heat Generation

5.1 Introduction

In the previous chapter, we studied one-dimensional, steady state heat conduction for a few simple geometries.
In those cases, there was no internal heat generation in the medium, ie. the term g, appearing in the general
differential equation was zero. So, the temperature distribution was determined purely by the boundary
conditions. However, there are many practical cases where there is energy generation within the system and we
would be interested to find out the temperature distribution within the body and the heat flux at any location, in
such cases.

Examples of situations with internal heat generation are:

(i} Joule heating in an electrical conductor due to the flow of current in it

(ii) Energy generation in a nuclear fuel rod due to absorption of neutrons
{iii} Exothermic chemical reaction within a system (e.g. combustion), liberating heat at a given rate through-
out the system
(iv) Heat liberated in ‘shielding’ used in nuclear reactors due to absorption of electromagnetic radiation such
as gamma rays
(v} Curing of concrete
(vi) Magnetisation of iron
(vii) Ripening of fruits and in biological decay processes.

Temperature distribution and heat flux are of special interest in some cases where safety of the system or
personnel is involved, e.g. ‘burn-out’ of nuclear fuel rods may occur due to excessive heat, causing a catastrophe,
if suitable precautions for adequate cooling are not taken. Also, analysis of electrical machinery, transformers and
electrical heaters would require that the generation of internal energy is taken into consideration.

Energy generation rate within the system is a volumetric phenomenon; so, its units are: W/ m’,

In this chapter, we shall examine the heat transfer in simple geometries (ie. plane slabs, cylinders and
spheres), with uniform internal energy generation. Several possible boundary conditions will be considered. We
will study the cases with constant thermal conductivity as well as temperature dependent thermal conductivity.
Finally, we will also analyse a few practical applications in the light of the theory studied with reference to these
simple geometries.

5.2 Plane Slab with Uniform Internal Heat Generation

Case of a plane slab with internal heat generation has practical applications in nuclear shielding, fuel rods in
nuclear reactors, electrical conductors, dielectric heating, etc.



While analysing a plane slab with internal heat generation, we shall consider three cases of boundary condi-
tions:
(i) both the sides of the slab are at the same temperature
{ii} two sides of the slab are at different temperatures, and
(iii) one of the sides is insulated.

5.2.1 Plane Slab with Uniform Internal Heat Generation—Both the Sides at the
Same Temperature
Consider a plane slab of thickness 2L as shown in Fig. 5.1. Other dimensions of the slab are comparatively large,
so that heat transfer may be considered as one-dimensional in the x-direction, as shown.
The slab has a constant thermal conductivity &, and a
— uniform internal heat generation rate of 7 (W/ m?). Both
kK g the sides of the slab are maintained at the same, uniform
temperature of T,. Then, it is intuitively clear that

Temperature X . . .
distribution (parabotic) maximum temperature will occur at the centre line, since
\< the heat has to flow from the centre outwards. Therefore,
T T, it is advantageous to select the origin of the rectangular

coordinate system on the centre line, as shown.
Let us analyse this case for temperature distribution
within the slab and the heat transfer to the sides.

Assumptions:
(i} One-dimensional conduction, i.e. thickness L is
L] small compared to the dimensions in the y and z-
L L directions.
X (ii) Steady state conduction, i.e. temperature at any

point within the slab does not change with time;
of course, temperatures at different points within
the slab will be different.

{iii) Uniform internal heat generation rate, g, W/ m?).

FIGURE 5.1 Plane slab with internal heat
generation—both sides at the same
ternperature

(iv) Material of the slab is homogeneous {i.e. constant density) and isotropic (ie. value of k is same in all
directions).

We wish to find out the temperature field within the slab and then the heat fiux at any paint.

We start with the general differential equation in Cartesian coordinates, namely, Eq. 3.9, since the geometry
under consideration is a slab, For the above-mentioned stipulations, Eq. 3.9 reduces to:

T4
—_— e —
dxt ok
Solution of Eq. 5.1 gives the temperature profile and then, by using Fourier's equation we get the heat flux at
any point.
Two B.C’s are required to solve this second order differential equation.
B.Cs:
(i) atx=0,dT/dx =0, since temperature is maximum at the centre line.
iy Atx=2+L,T=T,
Integrating Eq. 5.1 once,

=0 | (5.1

ar _ —4gx |

— C
dx k ' (@)
Integrating again,
2
T = # +Cx+GC, (5.2
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Eq. 5.2 is the general solution for temperature distribution; this is an important equation for the slab with
'heat generation. Whatever may be the boundary conditions, solution is given by Eq. 5.2; only the values of
integration constants C; and C; change depending on the B.C.'s.

For the present case,
applying B.C. (i) to Eq. a:

C, =0
applying B.C. (ii) to Eq. 5.2:
— 12
Tw = zgk + C2
2
. e L
£. Co=T, + -
ie =T, + ok
Substituting for C; and C; in Eq. 5.2:
2 2
4y X qg'L
Tix) = — + T, +
W=k Y2k
+14q,
ie. T(x) =T, + qu“ (12 -xh (5.3

where, L is half-thickness of the slab. (Remember this)

Note that the temperature, when there is internal heat generation, is not independent of k as in the case of a
slab with no internal heat generation.

Also, by observation, T = T, at x = 0. {You can show this easily by differentiating Eq. 5.3 w.r.t. x and
equating to zero.)

Then, putting x = 0 in BEq. 5.3:

N
Tax = Ty + —q‘; k (5.4}
Then, from Eqgs. 5.3 and 54, we get:
2 .2 2
Tk DXty (f] (55)
Tmax " L L

Eq. 5.5 gives the non-dimensional temperature distribution in a slab of half-thickness L, with heat genera-
tion. Note that the temperature distribution is parabolic, as shown in Fig. 5.1.

Make two important observations:

(i) From Eq. a, it is clear that temperature gradient (and, therefore, heat flux) for a slab with heat generation

depends on x, whereas it was independent of x in case of a slab with no heat generation.
(iiy From Eq. 5.3, we note that temperature distribution for a slab with heat generation depends on k,
whereas it was independent of k in case of a slab with no heat generation
Convection boundary condition:
In many practical applications, heat is carried away at the boundaries by a fluid at a temperature T; flowing on
the surface with a convective heat transfer coefficient, h {e.g. current carrying conductor cooled by ambient air or
nuclear fuel rod cooled by a liquid metal coolant). Then, mostly, it is the fluid temperature that is known and not
the wall temperature of the slab. In such cases, we relate the wall temperature and fluid temperature by an
energy balance at the surface, ie. heat conducted from within the body to the surface is equal to the heat
convected away by the fluid at the surface.

In the case of a plane slab, with both sides at the same temperature, it is clear from consideration of
symmetry that half the amount of heat generated travels to the surface on the right and the other half, to the left.
1f A is the surface area of the slab (normal to the direction of heat flow),
we have, from energy balance at the surface:

gy A-L=h-A(T,-Tp
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L
ie. T,=Ti+ qu (5.6}

Substituting Eq. 5.6 in Eq. 5.3,

qg L
h

Eq. 5.7 gives temperature distribution in a slab with heat generation, in terms of the fluid temperature, T, .
Remember, again, that L is half-thickness of the slab.
Heat transfer:
In the case of a stab with no internal heat generation, heat flux was the same at every point within the slab, since
dT/dx was a constant and independent of x. However, when there is heat generation, dT/dx is not independent
of x (see Eq. a), and obviously, heat flux , 4 ( = -k AdT/dx) varies from point to point along x. But, by observation,
we know that the heat transfer rate from either of the surfaces must be equal to half of the total heat generated
within the slab, for the B.C. of T, being the same at both the surfaces.
ie. Q=qAL ..(5.8)
This is easily verified by applying the Fourier’s law at the surface, i.e. at x = L, since we now have the
temperature distribution given by Eq. 5.3. We get,

Q = - kA@T/d0)t,

ie. Q = - kA[~ 9, 20/(20},_;
ie. Q=+qAL (same as obtained in Eq. 5.8)
52.1.1 Alernotive analysis. [n the alternative method, which is simpler, instead of starting with the general
differential equation, we derive the above equations from physical considerations.
Let us consider a plane inside the slab at a distance x from the origin, as shown in Fig. 5.2.
We know from observation that maximum temperature oc-
k, g, 3;, curs on the centre line, i.e. centre line is the line of symmetry and
Ty = Toax A no heat passes across the centre line.

So, making an energy balance for the surface at a distance x
from the centre line, we can write:
(Heat generated in the volume from x = 0 to x = x ) = (heat
leaving surface at x by conduction)

T(x) = T+

g 0
+ 2k (L* - x% -(5.7)

Temperature

distribution
—\< {parabolic)
T, Tw

Then,
. dT
qg-A-x=Ak-A-E ..(a)
Separating the variables and integrating,
Tx)= —=——+C (b
e () =— 7+ (b)
—— X

Now, atx =00, =0andatx =L, Q, = 4. AL, reaches a

FIGURE 5.2 Plane slab with internal heat
generation—aboth sides ot the some

maximum.
Atx=LT=T,;

temperature Then, from Eq. b:
2
_qu
T, = +C
w Zk
+q 12
ie. C=T,+—%f—
e w ) {c)

Substitute C from Eq. ¢ in Eq, &:
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Tx) =T, + ;_gk (L* - x%) . ..(d) (same as Eq. 5.3)

Eq. d gives the temperature distribution in the slab with heat generation, in terms of the wall temperature,

Ty
Atx=0,T =T,
Then, from Eq. d:
2
L
Trnax = Tw + ;k (e)
JA
le Tmax - Tw = q(;k (59)

Eq. 5.9 gives the maximum temperature difference within the slab (L is the half-thickness), when tempera-
tures on both sides of the slab are the same. From this equation, T,,,, can be calculated, after having determined
T, from Eq. 5.6. Eq. 5.9 is, therefore, important, since in many cases, we would be interested to know the
maximum temperature reached within the material, to ensure that the material will not melt in a given situation.
Remember this equation.

52.12 Andlysis with vorioble thermol condudtivily. In the above analysis, thermal conductivity of the material was
assumed to be constant. Now, let us make an analysis when the thermal conductivity varies linearly with
temperature as:
KT) =k,(1 + A7),
where, k, and fare constants.
Again, considering Fig. 5.2, we have from heat balance (see Eq. a above):

ar
g X = _k(T)"&;'

ar
-gx=k 1+ 5T)-—
ie g x =k (1+ BT —

Separating the variables and integrating,
j(1 + BTYT = 8 j xdx
kO

- ﬂ'Tz — g x2
2. T = =+ C
ie = L2 £

where, C is a constant, determined from the boundary condition:
Now,atx=0,T=T,
Then, from Ey. f,

T2
C=T,+ LAy
2
Substituting value of C in Eq. £,
2 _ 2 T2
T AT =i-x—+Tn+ ATy
2 k, 2 2
.TZ .x2 'T2
ie. ﬁ2 +T+ [ng.k —To—ﬁzU =0 (g)
a
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Eq. g is a quadratic in T. Its solution is:

3
2 2
-1+ 1—4-?-(?5—1—7" ——ﬁ'TO]

2k, ° 2
T(x) =
2.8
2
ie o) = == { 1,27 +T2]~q'g i
B 2B ) Bk,
2 42
ie. T(x) = Zﬁ—l + J (To + %J - q;.:a | {5.10)

Eq. 5.10 gives T{(x) in terms of T, (ie. T, at x = 0).

Remember that x is measured from the centre line,

If we need T{x) in terms of T, put the B.C.: at x =L, T = T,, in Eq. f, get the value of C and then substitute C
in Eq. f to get a quadratic in T. Its solution is:

. 2 2 2
_ o1 1) e -x)
T(x) = 7 + \/[Tw + ﬁ’J Ak, .(5.11)

Remember again, that L is the half-thickness of the slab and both the sides of the slab are maintained at the
same temperature, T,,.

5.2.2 Piane Slab with Uniform Internal Heat Generation—

Two Sides at Different Temperatures
Consider a plane slab of thickness L, with constant thermal conductivity , and temperatures at the two faces
being T; and T, as shown in Fig. 5.3. Coordinate system and the origin is chosen as shown.

Let T} > Ty. Now, Ty, must occur somewhere within the slab since heat is being generated in the slab and
is flowing from inside to outside, both to the left and right faces. Let T, occur at a distance %,,,, from the origin,
as shown in Fig. 5.3.

Our aim is to find out the temperature profile in the slab, position where the maximum temperature occurs
in the slab, and the heat transfer rates to the left and right faces. '

Assumptions:
k qg (i) One-dimensional conduction, i.e. thickness L
TN is small compared to the dimensions in the y
Toax and z directions.
{ii) Steady state conduction ie. temperature at
? Temperature any point within the slab does not change
distribution with time; of course, temperatures at different
points within the slab will be different.
(ili) Uniform internal heat generation rate, g W/
T, m’).
(iv) Material of the slab is homogeneous (i.e.
constant density) and isotropic (i.e. value of k
el dnn is same in all directions).
max : - .
> Under these assumptions, as shown in section
X 5.2.1, the general solution for temperature distribution
is given by Eq. 5.2, i.e.

- qg.xz
2-k

FIGURE 5.3 Plane slab with internal heat generation,
two sides ot different temperature T =

+Cx+Cy
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Eq. 5.2 is the general solution for temperature distribution; C; and C, are obtained by applying the boundary
conditions. For the present case, B. C.’s are:
~BL (ifatx=0T=T,
B.C (iiatx=LT=T,
Then, from B.C.(i) and Eq. 5.2, we get: C, = T) and, from B.C.(ii} and Eq. 5.2, we get:

2
—g,-L
T, = 2“-fk +C-L+T,
- L
Le. C, = —Tz h + Lg
L 2.k

Substituting for C; and C, in Eq. 5.2,

2
— Gy X - L
T(x} = O + (Tz L +qg]ox+T]

2-k L 2-k
. T, - T
ie. Tx)=T, + |:(L - x)-% +(—~2~L—]):l X .(5.12)

Eq. 5.12 gives the temperature distribution in the slab of thickness L, with heat generation and the two sides
maintained at different temperatures of T; and T
Location and value of maximum temperature:
To find out where the maximum temperature occurs, differentiate Eq. 5.12 w.r.t. x and equate to zero; solving, let
the value of x obtained be x,,,,; substitute the obtained value of x,,,, back in Eq. 5.12 to get the value of T a This
procedure will be demonstrated while solving a problem.
Heat transfer to the two sides:
Total heat generated within the slab is equal to:
Qhot = 9,AL
Part of this heat moves to the left and gets dissipated at the left face; remaining portion of the heat generated
moves to the right and gets dissipated from the right face.
Applying Fourier’s law:
Qugne = —k A @T/dx)1, -y,
Qg =~k A @T/dx), _q (this will be negative since heat flows from
right to left, L.e. in negative x-dirvection)

Of course, sum of Qi and Qp must be equal to Q-
Convection boundary condition:
Let heat be carried away at the left face by a fluid at a temperature T, flowing on the surface with a convective
heat transfer coefficient, h,, and on the right face, by a fluid at a temperature T, flowing on the surface with a
convective heat transfer coefficient, k. In such cases, we relate the wall temperature and fluid temperature by an
energy balance at the surfaces, i.e. heat conducted from within the body to the surface is equal to the heat
convected away by the fluid at the surface.

Further, the maximum temperature occurs at x = x,,,,, already calculated. Then, heat generated in the slab in
the volume between x = 0 and ¥ = X,,, has to move to the left face and the heat generated in the volume between

x = X, and x = [, has to move to the right face, since no heat can cross the plane of maximum temperature.
Then, we have, from energy balance at the two surfaces:
On the left face:
qg'A'xmax =k, AT, - T, --(a)
On the right face:
qg-A'(L - %) =k A-(T, =Ty ...{a)

From Eqs. a and b, we get T; and T, in terms of known fluid temperatures T, and T,, respectively. Thus after
obtaining T and T, substitute them in Eq. 5.12 to get the temperature distribution in terms of fluid temperatures
Ta and Tb‘
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5.22.1 Effect of variable k,huﬁmmmﬂmﬁhdmw For the assump-
tions of one-dimensional, steady state conduction with uniform heat generation and k varying with temperature
linearly as: k{T) = k(1 + BT), the controlling differential equation is (see Chapter 3}

d dT

Integrating k(T)-? + - x = C; where C, is a constant.
x
Separating the variables and integrating;

J' KT)dT = ‘[(c, ~ g, x)dx

Substituting for &{T): I[kﬂ~(1 + A4DdT = J‘(Ci — g ¥)dx

T2 2
ie T+ ﬁZT = ki-{cl-x - qu + Cz] {(A)...where C; and C, is a constant of integration)
€, and G, are found out by applying the B.C.'s in Eq. A:
BC@)atx=0T=T,
BC(ipatx=L T=T,
From B.C.{i} and Eq. A, we get:

2
CZ =ko'[Tl + ﬂle J

From B.C.(ii) and Eq. A, we get:

T2 g2 B.T2
T2+ﬁ 2 =i' Cl'L—qS +ka' Tl+ﬁTl
2 k, 2 2
T2 L T2
Therefore, ¢ = k. T2+—[2:Fz— +qi——k—°- Tl+ﬁT1 )
L 2 2 L 2 J
Substituting values of C; and G, in Fq. A:
2 2 Lox T2 x? T2
ie. T+ﬂ—T:_x_. T2+£H'Zz_ +qg—_f_. Tl+& _Eg__.f. ']"1+ﬁT1
2 L 2 2k, L 2 2-k, 2
2 2 x :
ie T+‘BT = T2+ﬁT2 L (L-x)+ Tl+ﬁTl (1-5]
2 L 2k, 2 L
2 2 x 72
ie. ,8-—T—+T~ T2+ﬁ_T2 -£+E~—--(L—x)+ T]+1119i -(1—5) =0
2 2 L 2k, 2 L

This is a quadratic in T. Its positive root is:

_1+J1+4.ﬁ.ﬂ7‘2+g'_]i}§'+‘Tg-x_(L“x)+[T]+E’Iﬁ}[1_xﬂ
2 2 |17 2%, 2 L

2.8
2

. Tx) =
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. 1|12 -T2 T2 T2 : :
ie. T(x):7+‘fﬁz-+ﬁ-[[n+ﬁ21]_%.(Tl.yﬁzl Tz_ﬁzzJ.;.?k:.(L—x)]

. -1 1 2. 2 -X
1.e. T{x) = —[—3— + [?+T12 +71}-"%|:(T1—T2)+§(T1—T2)(T1 +T2)]+§ko'(L_x)
-1 1 > 2x Go-X
ie. T(x) = F + (—ﬁ—+Tl] —E_-E-(ﬂ -1+ - T+ S_ko (L —x)
where, T, = 4 ;Tz (mean temperature.}

Eq. 5.12a gives the temperature distribution in a slab of thickness L, with heat generation, with the two faces
maintained at different temperatures, when the & varies linearly with temperature.

5.2.3 Plane Slab with Uniform Internal Heat Generation—

One Face Perfectly Insulated
Consider a plane slab of thickness L, with constant thermal conductivity &, and one of the faces (say, left face) is
insulated as shown in Fig. 5.4. Other face of the slab is at a temperature of T,. Coordinate system and the origin
is chosen as shown.

Now, T, must occur on the insulated left surface of the k q

slab since heat is being generated in the slab and is constrained Tk
. Insulated -_
to flow from left face to right face. i
. . . S~k Temperature

Qur aim is to find out the temperature profile in the slab, i distribution
and the heat transfer rate. Torax &
Assumptions:

(i) One-dimensional conduction, ie. thickness L is small 7 T, h

compared to the dimensions in the i and z directions. H 3

(ii) Steady state conduction, i.e. temperature at any point a
within the slab does not change with time; of course, ;
temperatures at different points within the slab will be

different. 5
(iii} Uniform internal heat generation rate, f, (W/m%. L

(iv) Material of the slab is homogeneous {i.e. constant ‘ > X
density) and isotropic (i.e. value of k is same in all
directions). FIGURE 5.4 Plane slab with internal heat
Under these assumptions, as shown in section 5.2.1, the generation, one side insulated
general solution for temperature distribution is given by Eq. 5.2,
1.e.
2
—g.-x
T = J;S’T +Crx+Cy {5.2)

Eq. 5.2 is the general solution for temperature distribution; C, and C, are obtained by applying the boundary
conditions. For the present case, B. C.’s are:

B.C.(i): at x = 0, dT/dx = 0, since perfectly insulated. ( Note: ‘perfectly insulated” means that 0 = 0, i.e. -k A
(dT/dx) = 0, and since k and A are not zero, 4T/ dx must be zero).

B.C(ii):atx=L,T=T,

From Eq. 5.2:

a1 _ ~fst
dx k

+ 4
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Then applying B.C.(1), we get: C, = 0
From B.C.(ii) and Eq. 5.2:

2
qg'L
Cy=T,+
2 w 2k
Substituting for C; and C, in Eq. 5.2:
Tx) =T, + %- (L2 - ¥%) ..(5.13)

Eq. 5.13 gives the temperature distribution in a slab of thickness L, with heat generation when one side is
perfectly insulated. Fig. 5.4 shows the temperature distribution in the slab; note that temperature curve should
approach the left face horizontally, since (dT/dx) = 0 at x = 0.

Note that Eq. 5.13 is the same as Eq. 5.3, which was derived for a slab with heat generation, when both the
sides were maintained at the same temperature, except that now, L is the thickness of the slab and not half-
thickness.

In case of convection boundary condition:
Let the heat be lost from the un-insulated surface to a fluid at T,, flowing on the surface with a heat transfer
coefficient of &, Then, we relate T, and T, by making an energy balance at the right face. Since the left face is
insulated, all the heat generated in the slab travels to the surface on the right and gets convected away to the
fluid.
Heat generated in the slab:
Qgen =ty A-L
Heat convected at surface:
Quony = ha' A (T, - T)
Equating the heat generated and heat convected, we get:

‘?g'L

To=Tos = )
Substituting from (a} in Eq. 5.13,
-L
T =T,+ 85, 8 g2 {5.14)
h, 2k

Eq. 5.14 gives the temperature distribution in a slab with heat generation and constant &, insulated at one
face and losing heat at the other face to a fluid by convection, in terms of the fluid temperature.

Note: If the convection resistance is zero, which means that the heat transfer coefficient is infinity, the wall
temperature and the fluid temperature are the same, ie. T, = T, and Eq. 5.14 reduces to Eg. 5.13.
Maximum temperature:
Obviously, maximum temperature occurs at the insulated surface. This can be easily verified by differentiating |
the expression for temperature distribution, Eq. 5.13, w.r.t. x and equating to zero. Putting x = 0 in Eqn. 5.13:

12
To =T, + %, .(5.15)
Eq. 5.15 gives T,,, in terms of wall temperature, T,,.
Substituting for T, from Eq. a in Eq. 5.15

L g-I?
T =T, + B2, 18 {5.16)
h, 2:k
Eq. 5.16 gives T,,,,, in terms of fluid temperature, T,.
From Eq. 5.13 and 5.15, we can write:
T(x)-T, L[*-x 2
W-Tw _ o1 (5) (5.17)
Tmax - Tw L L
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Egn. 5.17 gives non-dimensional temperature distribution for a slab with heat generation, and one face insu-
lated. This equation is the same as Eq. 5.5 for a slab with heat generation and both faces at the same temperature,
except that, now L is the thickness of the slab (In the case of Eq. 5.5, L was the half-thickness}.

Exumple 5.1. Heat is generated uniformly in a stainless steel plate having k = 20 W/(mK). The thickness of the plate is 1
cm and heat generation rate is 500 MW / m®. If the two sides of the plate are maintained at 100°C and 200°C, respectively,
calculate:

(i} the temperature at the centre of the plate

(i} the position and value of maximum temperature
(iii) heat transfer at the left and right faces
(iv) sketch the temperature profile in the slab.
Solution.
Data: :

L:=001m A:=1m’ k:i=20W/(md) 4,:=500x10°W/m’ T;:=200C T;:=100C

See Fig. Example 5.1.

This is the case of one-dimensional, steady state conduction through a plate with heat generation, when the two
faces of the plate are maintained at different temperatures. So, we can directly apply Eq. 5.12 to get T{x} at any position
x.

However, let us solve this problem from first principles, and then verify the result from Eg. 5.12.

For this situation, governing differential eqution is:

T 4 g . — k=20 W/(mC) o
&tk Too Y «]—q,=500x10 Wim
Integrating; TT + ikﬁ =G b) ? Temperature distribution
x
. . —ggx” T, =200°C
Integrating again: T(x) = e + Cx + Cy Q)
Apply the B.C/'s: ie. T5=100°C
(i) atx=0 T, = 200°C
(i) atx=L=001m: T, = 100°C
From B.C. (i) and Eq. ¢ C, = 200 e Xm:x_
From B.C. {ii} and Eq. ¢ >
~ 4, It —_— X

T, = 7k +CL+C,

FIGURE Example 5.1 Plone slab with infernal heat

, generation, two sides at different temperature
[T 9e c J .
2 Zk Tz
ie. Ci= —————= ..define C)
L
ie. C, = 115 x 10°
Substituting for C; and G, in Eq. ¢
_ 6.2
T(x) = i’gx—]i%ﬁu +115% 105 x + 200 ((d) (define T(x))
x

Eq. d gives the temperature profile.
Temperature at the centre of the plate:
Put x = 0.005 m in Eq. d:
ie. T(0.005) = 462.5°C (temperature at the centre of plate.)
Verify: from direct formula Eq. 512

T = T, + [(L - x)-% + —T%-ii]r (5.12)

Put x = 0.005 m: T{0.005) = 462.5 °C (verified.)
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Position and value of maximum temperature:
We have the relation for T(x) in Eq. d. Differentiate it w.r.t. x and equate to zero. Root of the resulting equation gives the
position, xp,, of the location of maximum temperature. Then, substitute x,.,, back in Eq. d to get T,,.

We have:
- 10° - x*
T(x) = %—i + 115 % 10F-x + 200 (Eq. d...define T(x))
) d
Let T'(x) = (— T(x)]
dx
Then,
_ 6.5,
7o) = 220X 0T 2x e 10 {d)
2.20

Putting T'(x) = 0 and solving:
= 1.15x 195 x2x 20
500 x 10%x 2
ie. xr=46x10"m =46 mm = ‘xmax...posiﬁon of maximum temperature from LHS,
i xp., = 0.0046 m.
Verify: In Mathcad, there is no need to do the labour of differentiation, equating to zero and then solving for x, as done
above.

Instead, define T"(x) as the first derivative of T(x) w.r.t. x and use the ‘root function’ to find the root of T'(x) = O: For
this, first, assume a trial (guess} value of x:

T(x) == (di T(x)) (define T'(x})
X
x = 0.002 {trial value of x)
Xy = root (T7(x), x) (define x.,,, as the root of equation T'(x} = ()
le ¥ =46x 107 m (position of maximum temperature from LHS..verified.)

Value of maximum temperature:
This is obtained by putting the value of x,, in Eq. d:
Le putx = x,,. in T{x):

Tax = T(0.0046) °C (define T,,.)
ie. Toax = 464.5°C {value of maximum temperature.)
Heat transfer to left and right faces:

Knowing T(x), it is easy to find T"(x} = (dT/dx) at x = 0 and at x = L; We have already found out, in Eq. d, T'(x) - just put
x = 0or x =1, as required. Then, apply Fourier’s law to get Q at x = 0 and x = L:
Heat transfer from left face, (3;:

Q) =-kATI0) {define Q\...Fourier's law)
ie. Qy = - 2.3 x 10° W/m® = 2300 kW/m? ..heat transfer from left face.

Note that negative sign indicates that heat flow is in a direction opposite to the positive X-direction, i.e. heat flow is

from right to left, as far as the left face is concerned. Heat is flowing from centre to left side in steady state.
Heat transfer from right face, Q,:

Q> =~ k-A-T'(0.01)

ie. Q=27 % 10° W/m? = 2700 kW /m? (heat transfer from right face.)
Verify: Sum of (J; and , must be equal to the total heat generated, Qgen

Qpen = 9 A LW (define total heat generaied)
ie. Qgen =5x 105 W (total heat generated)
Also, QL+ Q= 5x10°, W=Q,., (verified)

Note: Remember that absolute values of (3; and @, are to be used, disregarding the signs, since the sign only indicates
the direction of heat flow.

To plot the temperature profile in the slab:

This is done very easily in Mathcad. First, define a range variable ¥, varying from 0 to 0.01 m, with an increment of
0.0005 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with x
and T(x), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig, Ex. 5.1(b).
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x =0, 0.0005, ..., 0.01 {define a range varighble x starting value = 0,
next value = 0.0005 m and last value = 0.01 m}

Temperature profile-slab with heat generation
500

450 ~
400 / \ X in metres and

. 4 \ T(x)in deg.C
T 200 / \
250 / \

200 \\
150

100

0 0.002 0004 0006 0008 0.01
X

FIGURE Example 5.1(b)

Note: It may be observed from the graph that the maximum " k = 20 WHmC) 6 3
temperature is 464.5°C and it occurs at x = 0.0046 m. . A« g, =500%10" W/m
Example 5.2. If in Example 5.1, the temperatures on either Tmax = 412.5°C il I
side of the plate are maintained at 100°C, calculate: ™~ Temperature
(i) the temperature on the centre line distribution (parabaelic)
(i) temperature at one-quarter of the thickness from the \< )
surface Tw T, =100°C
(iti) draw the temperature profile.
Solvtion.
Data:
2L=001m L:=0005m A:=1m’ P ——
k=20 W/(mec) g, =500 x 10° W/m® T, == 100°C L] L
See Fig. Example 5.2. > X

This is the case of one-dimensional, steady state conduc-
tion through a plate with heat generation, when the two FIGURE Example 5.2 Plane slab with internal heat
faces of the plate are maintained at the same temperature. So, generation, both sides at the same temperature
we can directly apply Eq. 5.3 to get T{(x) at any position x.

ie. TR) = T, + 5 (L2 - %) (5.3)
2.k
where, L is half-thickness of the slab.
Temperature at the centre line of plate:
At mid-plane, x = 0; therefore, substitute x = 0 in Eq. 5.3:
T(0) = 412.5°C (temperatue at the centre line of plate.)

T(0) = 412.5°C is also the maximum temperature in the plate.
Temperature at one-quarter the thickness from the surface:
j.e. at x = 0.00025 m from the centre line. Put x = 0.00025 in Eq. 5.3

T(0.00025) = 334.375°C (temperature at 1/4 of the thickness from surface.)
To draw the temperature profile:
We shall draw the temperature profile for the right half; by symmetry, temperature profile on the left half is the mirror
image of that on the right half.
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First, define a range variable x, varying from 0 to 0.005 m, with an increment of 0.00025 m. Ther., choose x-y graph
from the graph palette, and fill up the place holders on the x-axis and y-axis with x and T(x), respectively. Click
anywhere outside the graph region, and immediately the graph appears. See Fig. Ex. 5.2(b).

x := 0, 0.00025, ..., 0.005 (define a range variable x.starting value = 0,
next value = 0.00025 m and last value 0.0005 m)

T(x} for plate with heat generation

500
450
400
\ x in metres and
350 T{x)in deg. C
Tix)
300

250 |~ —\
200 \\
150

100

0 0.001 0002 0.003 0004 0.005
X

FIGURE Example 5.2(b)

Note: Above graph shows the temperature profile for the right half of a plate with internal heat generation, when both
the sides are maintained at 100°C. For the left side of Fhe plate, temperature profile is identical, mirror image of this
graph.
Exemple 5.3. In Example 5.1, if the thermal conductivity of the material varies as: k(T) = k(1 + §T), (W/(mC) where k, =
14.695 W/(mC) and £ = 10.208 x 107, {C™"), and T iwin deg.C.
(i) calulate the temperature on the centre line

(ii) find location and value of maximum temperature in the plate

(iii) find heat transfer rate to the left and right sides, and

(iv) draw the temperature profile,
Solution. See Fig. Example 5.3.

————— k{T} = 14.695 (1 + 00010208 T) W/{mC)

- o 3
Tonax = 479.9°C <« g, =500 10" Wim
Temperature distribution
™.
T, = 200°C y
T,=100°C
-y P

Xraw

oL

L X

FIGURE Example 5.3 Plane slab with internal heat generation, variable k, with two sides ot different
temperature
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Data:

L=00lm -A:i=1m? KD=k{1+8TY k:=1495W/(mC) f:=10208x107(1/C)

g, =500 x 10° W/m® T :=200°C  T,:= 100°C

We can directly use Eq. 5.13 to get the temperature at any location; however, let us work out this problem from
fundamentals and verify the result from Eq. 5.13.

We start with the governing differential equation for the case of a slab in steady state, one dimensional conduction
with heat generation and variable k, and integrate it twice in conjunction with the B'C.’s, to get the temperature profile;
We have:

d dr
LI il v g, =
dx(()dx}+q3 0

dT
Integrating: k(T) - e + g, x = C; where C; is a constant.
X
Separating the variables and integrating:

Jk(T)dT = J (Cy - gy x)dx

Substituting for k(T): J [k, (1 + FT)dT = j (C, - qg-x}dx

T2 o
e, T+ 'B: = %-(C,-x— qszx-JrCzJ ...(a)
(]

Eq. a is the general equation for temperature distribution. Constants C, and C, are obtained by applying the B.C.’s:
BC()patx=0T=T,
BCGiratx=LT=T,

. T2
From B.C.(i) and Eq. a Cyi=k,- [T1 + '32 . J

substituting C,=323%x 103
From B.C.(ii) and Eq. a

2

T2 .12
ku-(T2 + ‘8,11“2]1-‘;5»—— -G,

C, =
! L

substituting, we get C; = 2.331 x 10%
Substituting value of C, and C, in Eq, a and simplifying, we get:

T2
s >t T - {1.58595 x 10%x — 1.70126 x 107-x7 + 220.416) = 0 (b}

Eg. b is a quadratic in T. Its positive root is given bw:

—4
-1+ Jl +4- %;Xl[}- (158595 x 10° - x — 1.70126 x 107 -x2 + 220.416)
(€)

T{x) =
) 510208 10~*

2
Eq. c gives the variation of temperature with x.

Temperature at the centre line:
Put x = 0.005 m in Eq. ¢

T(0.005) = 473.597°C (temperature at centre line.)
Verify: verify this result from direct formula, eqn. 5.12, a.
T, = L] ie. T, = 150°C (mean value of temperature)
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2
- . X
ie. T() = 71 . J[%+TI) —%-(Tl—’rz)-(1+ﬁ-]"m)+§_ko (L—x) 5.12(a)
ie T(0.005) = 473.596°C (verified.)
Location and value of maximum temperature in the plate:
Differentiate Eq. ¢ w.r.t. x and equate to zero and get x,,, the position of T, ; substitute this value of x_, back in Eq.
ctoget valueof T ..

In Mathcad, we do not have to go through the labour of differentiation, equating to zero, then solving etc. We use
the ‘root function’. First, define T'(x) = d(T{x))/dx. Then, assume a trial value of x and type the command 'root{T"(x),
xtrial} = *. This gives root of T'(x) = 0. ’

max’

-4
-1+ Jl + 4-%-(1.5&595 x10%.x —1.70126 x 107 -x? + 220.416)

T(x) = Z_EUS prP ...define T(x)...(c)
2

. d -

T'(x) = —T(x) ..define T'(x)
dx
x = 0.002 m (trial value of x)
Xy 7= TOOL (T'(I), x) (deﬁne xmax)
i€ Xpae = 4.661 x 107 m = 4.661 mm (location of maximum temperature...distance from LHS.)
Value of maximumn temperature is obtained by putting r = x,, in Eq. ¢

ie. T(xpay) = 474.913°C (value of maximum temperature)

Heat transfer to left and right faces:
Knowing T(x), it is easy to find T'(x) = (dT/dx} at x = 0 and at x = L; We have already defined T"(x}—just putx =0 or x
= L, as required. Then, apply Fourier's law to get Qatx=0and x = L:

Remember HT)y:=k, 1+ 8T) (define k(T))
Heat transfer from left face, Qy:

Q= - k(Ty)-A-T'(0) {define Q,...Fourier's law}

ie. @ = - 2331 x 10° W/m? = - 2331 kW/m® {heat transfer from left face)

Note: Negative sign indicates that heat is flowing from right to left, i.e. in the negative X-direction.
Check: This should equal the amount of heat generated between x =0 and x = x_,,
Heat generated between x = 0 and x = x,,,:

Qgenl = qg‘A' {(*max = 0)

ie. Queat = 2.331 x 10° W/m* {verified.)
Heat transfer from right face, Q,:

Q= — K(Ty)- A-T'(0.001) (define Q... Fourier's law)
ie Q, = 2.669 x 10° W/m? = 2669 kW/m? (heat transfer from left face)

Check: This should equal the amount of heat generated between x = x,,,and x = L.
Heat generated between x =0and x = x_, and x =L
Qgenl = Qg'A‘(L - xmax)
ie. Qgenz = 2.669 x 106 W/m? (werified.)
To plot the temperature profile in the plate:
This is done very easily in Mathcad. First, define a range variable x, varying from 0 to 0.01 m, with an increment of
0.0005 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with x
and T(x), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig. Ex. 5.3(b).
x =0, 0.0005, ..., 0.01 (define a range variable x..starting value = 0,
next value = 0.0005 m and last value = 0.01 m)
Note: It may be observed from the graph that the maximum temperature is 474.9°C and it occurs at x = 0.00466 m.
Exomple 54. A plane wall of thickness 0.1 m and k = 25 W/(mK), having uniform volumetric heat generation of 0.3
MW/m® is insulated on one side and is exposed to a fluid at 92°C. The convective heat transfer coefficient between the
wall and the fluid is 500 W/(m?K). Determine:
(i) the maximum temperature in the wall
{(ii) temperature at the surface exposed to the fluid
(iii) Draw the temperature profile.
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Temperature profile-slab with heat generation.
500 Variable k(T)

TN x in metres and

h,

450 Tix) in deg.C
400 / \ o
350 / \
UL 300
250 / \\
200

\

150

100
0 0.002 ©.004 0.006 0008 0.01
X

FIGURE Example 5.3(b)

Solution. See Fig. Example 5.4. i X (g~ k = 25 WHmMK)
Data: a 3
L:=00lm A:=1m? k:=25W/(mK) Insutated  # 9 0.3 MW/m
4o = 03X 10°W/m®  T,:=92°C R, = 500 W/(m’K) T Temperature
By observation, we know that maximum temperature . Tinax & /distribution
occurs on the insulated wall; this is so because, the heat gener- :
ated in the wall is constrained to flow from left to right since the \< 2
left face is insulated and for this to occur, temperature on the g Tw A h,=500 Wi(m K)
left must be higher than that on the right. £
We can directly apply Eq. 5.14 and put x = 0 in that §
equation to get T, 2 T,=92°C
We have, from eqn. 5.14 ;
Ty =T, + 25 0 A g2 (5.14) CL=0Am
n, 2k
Maximum temperature in the wall: (occurs at the insulated X
surface L.e. at x = 0) FIGURE Example 5.4 Plane slobe with internal
Put x = 0 in Eq. (5.14): heat generation, one side is insulated
T(0) = 212°C (maximum temperature in the wall,

occurs on the insulated left surface.)

Temperature at the surface exposed to the fluid:
Put x = 0.1 in Eq. {5.14):
T(0.1) = 152°C (temperature at the surface exposed to the fluid.)
To draw the temperature profile: '
Using Mathcad, this is very easy. First, define a range variable x, varying from 0 to 0.1 m, with an increment of 0.005 m.
Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with x and T(x},
respectively. Click anywhere outside the graph region, and immediately the graph appears. Fig. Ex. 5.4(b).
x:= 0, 0.005, ..., 0.1 (define a range variable x...starting value = 0,
next value = 0.005 m and last value = 0.1 m)
Note: It may be observed from the graph that the maximum temperature is 212°C and it occurs atx =0 and at x = 0.1 m
the temperature is 152°C.
Example 55. The exposed surface (x = 0) of a plane wall of thermal conductivity k, is subjected to microwave radiation
that causes volumetric heating to vary as: g,(x} = 4,(1 — x/L) where q,{(W/ m% is a constant. The boundary at x = L is
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Temperature profile-slab with heat generation

220 .

210

200 X in metres and
\ T(x)in deg.C

190 \
X
——180 N

170

160 \
N

150!
140
0 002 004 0D6 008 0.1
X
FIGURE Example 5.4(b)
k 3 perfectly insulated, while the exposed surface is main-

Qg = 9o{1 = XL). WIMm™ ined at a constant temperature, T,. Determine the tem-

perature distribution T(x) in terms of x, L, k, g, and T,

r
7oAl & Insulated Sofution. See Fig. Example 5.5.
, Here, the heat generation rate is not uniform
Microwave ——p- throughout the volume, but varies with position.
—

For the assumption of one-dimensional, steady state
conduction with constant k, and the internal heat genera-
tion at the specified rate, the governing differential equa-

{ tien is:
h 2
~ - T %y ()
- L » dx k
. AT g ( x}
%> X Substitute for 4, — +---[1->1 =10
ubstitute for gg: -+ .
FIGURE Example 5.5 Plane slab with variable heat 2
generation rate, one side insulated Integrating, LI S . C (b)
' “dx  k 2kL
2 3 .
Again, integrating, Ty + 22 _ X Cix+ Gy ..[c)

2.k 6-k-L
where, C; and C, are constants of integration.
Eq. ¢ gives the temperature distribution. C, and C, are obtained by applying the boundary conditions:
BC (i)atx=0T=T,
B.C. (ii): at x = L, dT'/dx = 0, since right face is insulated

B.C. (i) and Eq. ¢ gives: C, =T,
B.C. (ii) and Eq. b gives: C = Lg:
Substituting C; and C, back in Eq. ¢
T(x) = 80X _G¥ golex T,
6-k-L 2k 2k
ie. T() =T, + -"”Z'_Lk'x{l - % + ;{;J (d)
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Eq. d is the desired relation for temperature distribution as a function of x, L, k, g, and T,.
Example 5.8, A copper conductor (k = 380 W/(mnC), p=2 x 107% ohm x m), 8 mm diameter and 1 m long, connects two
large plates. One face is maintained at 30°C and the other face, at 50°C. Space between the plates is filled with an

insulation.
(i) What is the maximum temperature and its location if the maximum current flowing is 150 A?

{ii) Calculate the heat dissipation to LHS and RHS
(iii) Draw the temperature profile.
Solution. See Figure Example 5.6,

Insulated

d =8 mm, k = 380 W{mC)

T, = 30°C T, = 50°C

> X

FIGURE Exomple 5.6 Rod connected between two plates

Data:
L:=10m d:=0008m T,=30°C T,:=50°C k:=380 W/(mC) pi=2x10®° Ohmxm

2

m?ie A:=5027 x107° m?

I:=150 Amp A:=
Obviously, maximum temperature will occur at a location nearer to the end at 50°C.
Since the bar is laterally insulated, it is a case of one-dimensional conduction in the X-direction, in steady state,

with heat generation and constant k.
So, the controlling differential equation is:

&*T 4
—t—= =10 w{a
ik @
. dT g%
Int ting: — + =C
ntegrating Tr . 1
—_— q .xz
Integrating again: Tix) = —«sr +Crx+ Gy ...{b}

Eq. b gives the temperature distribution in the bar.

Apply the B.C.’s to get C; and C,, the constants of integration.
B.C. (iyatx=0,T=30C
B.C. (iiy at x = 1m, T = 50°C
To calculate g,

2 .
g, = 2 . i, where (} is the heat generated.
£ Volume Volume
L
Resistance R: R:= pT
ie. R = 3.979 x 10~* Ohm {resistance of the rod)
2
Therefore, gy 1= i%f W/m? (heat generation rate due to Joule heating)
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ie 4, = 1.78104 x 10° W/m’ (heat generated rate)
B.C.(0) and Eq. b gives: C,=30
2

qs'L
2.k
L

50+ -G,

B.C.(ii) and Eq. b gives: C =

Substituting and simptlifying C, = 254.347

Substituting C; and C, back in Eq. b

- (1.78104 x 10%)- x?

2x 380

ie. T(x} = — 234.347-x% + 254.347-x + 30 ()
Eq. c is the desired eqn. ¢ for temperature distribution.

Location and value of maximum temperature:

Location of maximum temperature is obtained by differentiating Eq. ¢ w.r.t. x and equating to zero:

ie. -234347-(2x) + 254.347 = 0

T({x) = + 254347 -x + 30

. 254 347
ie Xim e
234.347 % 2
ie ¥ =0543 m (location of maximum temperature..(this is the distance from LHS))

Value of maximum temperature:
Substitute this value of x in Eq ¢

T(0.543) = 99.013°C (value of maximum temperature)
Heat dissipated to LHS and RHS:
Since the temperature profile is known, get I"(x} = dT(x}/dx at x = 0 and x = L, and then apply Fourier's law at x = 0 and
x =L, to get Qyoq and Qupnet

T'(x) = dfi—IT(:rc) (define T'(x), the first derivative of T (x) w.r.t. x}

Therefore, T'(0) = 254.347 C/m dT/dx at x =0, ..ie at LHS)

and, T'(1) = - 214.347 C/m (dT/dxat x=1m, ..ie at RHS)
So, we have:

Quap = -kAT QW (define Q,5)
ie. Qlest = - 4.858 w (heat dissipated from left end.)
Note: Negative sign of (J indicates that heat is flowing from right to left, i.e. in negative X-direction.

And, Qg =~k A-T"(1), W (define Qi)
ie. Qiigha = 4094 W (heat dissipated from right end.)
Check: Sum of the heat dissipated from left and right ends must be equal to the total heat generated in the bar:

Qe = 1Quep! + 1 Qg | W {define Q)

ie. Qe = 8952 W (fotal heat dissipated)
Now, Qeen =1 RW (heat generated by Joule heating)
ie. Quen = 8952 W (checks with Q)

To draw the temperature profile:
First, define a range variable x, varying from 0 to 1 m, with an increment of 0.01 m. Then, choose x-y graph from the
graph palette, and fill up the place holders on the x-axis and y-axis with x and T{(x), respectively. Click anywhere outside
the graph region, and immediately the graph appears. See Fig. Ex. 5.6(b).
x:=0,001..,1 (define a range variable x...starting value = 0,
next value = 0.01 m and last value = 1 m)
Note from the graph that maximum temperature of 99.01°C is reached at x = 0.543 m, i.e. beyond the mid-point,
towards the right end.

5.3 Cylinder with Uniform Internal Heat Generation

There are several applications of cylindrical geometry with internal heat generation, e.g. current carrying
conductors, nuclear fuel rods, chemical reactors, etc. We shall consider solid cylinders as well as hollow cylinders
with different types of boundary conditions.
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T{x} for a bar with heat generation
100 = [

. / X in metres and

80 / \\ Tix) in deg.C

T00 60 / N
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FIGURE Example 5.6(b)

5.3.1 Solid Cylinder with Internal Heat Generation
Consider a solid cylinder of radius, R and length, L. There is uniform heat generation within its volume at a rate
of g, (W/ m®). Let the thermal conductivity, k be constant.

See Fig. 5.5.

We would like to analyse this system for temperature distribution and maximum temperature attained.

Temperature profile,
parabolic

g

FIGURE 5.5(a) Cylindrical system with heat FIGURE 5.5(b) Variation of temperature along the
generation radius

Assumptions:
(i) Steady state conduction
(ii) COne-dimensional conduction, in the r direction only
(iii) Homogeneous, isotropic material with constant &
{iv) Uniform internal heat generation rate, g, (W/ m’),
With the above stipulations, the general differential equation in cylindrical coordinates (see Eq. 3.17) reduces

to;
2
E_Z_J,l.ﬂﬁ_g -0 {a)
dr rdr k&
d°T 4T Gy
Multiplying by #: #« =g + mam + -2 =
Plying by r: 1~ o 4 =
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dr dr k
Integrating: r-—dj‘:wﬂ+c
granng: ar 2k
. ar —q.r G
e —_— =+ (b
- ar 2k r ®)
__qg.rz
Integrating again: T(r) = w +C-In(r) + G, .{5.18)

Eq. 5.18 is the general relation for temperature distribution along the radius, for a cylindrical system, with
uniform heat generation.

C, and C,, the constants of integration are obtained by applying the boundary conditions.

(Remember Eq. 5.18, since the same equation will be the starting point in the analysis of hollow cylin-
ders too, with different boundary conditions.)

In the present case, B.C.'s are:

" B.C. (i): at r = 0, dT/dr = 0, i.e. at the centre of the cylinder, temperature is finite and maximum {ie. T, =
Tonad because of symmetry (heat flows from inside to outside radially).

B.C. (ii}: at » = R, L.e. at the surface, T=T,

From B.C. (i) and Eq. b, we get: C, = 0

From B.C. (ii} and Eq. 5.18, we get:

2
T.=—— +C
o 4)'( 2
2
. qQ'R
N3 C,=T,+
' 27w Tk
Substituting C; and C, in Eq. 5.18
2 2
..qg.r qu
T(r) = T,
W=y ety
. g 2_ 2
ie T(ry =T, + r (R =r7) -(3.19)

Eq. 5.19 is the refation for temperature distribution in terms of the surface temperature, T,,. Note that this is
a parabolic temperature profile, as shown in Fig. 5.11(b).

Maximum temperature: .
Maximum temperature occurs at the centre, because of symmetry considerations (i.e. heat flows from the centre
radially outward in all directions; therefore, temperature at the centre must be a maximum.)

Therefore, putting r = 0 in Eq. 5.1%:

2
ge-R
T =T+ — ..(5.20
max i 4'k ( )
From Eq. 5.19 and 5.20,
2

ﬂ_ =1- [i) A53.21)

Tmax - Tw R

Eq. 5.21 is the non-dimensional temperature distribution for the solid cylinder with heat generation.
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Convection boundary condition:

In many practical apptications, heat is carried away at the boundaries by a fluid at a temperature T, flowing on
the surface with a convective heat transfer coefficient, & (e.g. current carrying wire cooled by ambient air). Then,
mostly, it is the fluid temperature that is known and not the surface temperature, T,,, of the cylinder. In such
cases, we reldte the wall temperature and fluid temperature by an energy balance at the surface, i.e. heat
generated and conducted from within the body to the surface is equal to the heat convected away by the fluid at
the surface.

ie. ZRELgo =l (2 2 RL) (T, - Tp)
. g, R
1.e. Tuv = Ta + %};‘ (C)
Substituting ¢ in Eq. 5.1%:
dg R de o o
Ty =T, + —— + (R - (5.22
) =Ty e+ o (R (5.22)

Again, for maximum temperature put r = ( in Eq. 5.22:

g R 4 R
max=Ta+_ +
2:h 4k

Eq. 5.23 gives maximum temperature in the solid cylinder in terms of the fluid temperature, 7T,.
5.3.1.1 Alernative omalysis. In the alternative method,
which is simpler, instead of starting with the general
differential equation, we derive the above equations from
physical considerations. See Fig. 5.6.

Let us write an energy balance with an understanding
that at any radius r, the amount of heat generated in the
volume within # = 0 and r = r, must move outward by
conduction,

i.e. at any radlus r, we write the energy balance:

T {5.23)

qgw-rz-L =—k'(2-7r-r-L)-d—T ..{a)
dr
daT = -_E%gu-r-dr
. FIGURE 5.6 Solid cylinder with heat generation
Integrating:
[ar=2% [
2-k
ie. T(H)= —%— +C
i )= (b)

Eq. b gives the temperature distribution along the radius.
Get the constant of integration, C from the BC:atr=R, T=T,

.R?
ie. C=T,+ Sl
a-k
Substituting C back in Eq. b:
2 2
—fg7 gg-R
Tir} = + Ty + ~——
W= T Tak
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i T gy . '
ie. M =T, + oy (R°-7%) ()

Eq. ¢ gives the temperature distribution along the radius, in terms of the surface temperature of the cylinder.
Note that Eq. ¢ is the same as Eq. 5.19 derived earlier.

In many applications, temperature drop between the centre line (where maximum temperature occurs) and
the surface is important (e.g. in nuclear fuel rods, to ensure that the fuel rod does not melt). Then, from Eq. ¢,
putting r = O:

2
4g 'R
T,~T, = i ..(5.24)
Eq. 5.24 is important; it gives the maximum temperature difference in a solid cylinder with heat generation.
Knowing T,,, one can easily find out T, (= T,,.).

Compare Eq. 5.24 with Eq. 5.9, derived earlier for the maximum temperature difference in a slab with uni-

form heat generation.
53.1.2 Anolysis with variable thermal condudtivity. In the above analysis, thermal conductivity of the material was
assumed to be constant. Now, let us make an analysis when the thermal conductivity varies linearly with tem-
perature as:
kK(T) = k,(1 + BT),
where, k, and f are constants. ‘
Again, considering Fig. 5.6, we have from heat balance (see Eq. a above):

qg-mrz- L=-k(D)-2 ;r-r-L)-fg fa)

ie. K(T)-dT = ;8 r-dr

Substituting for k(T) and integrating:

k(1 + BTYT = —%. | rdr
] ol

T2 —g,r?
BT Tk

ie. = +C ..{e
2 4.k, )
C is determined from the BC.:atr=0,T=T,
We get:
T2
C=T,+ &
2
Substituting C in Eq. e:
2 2
BT’ s BT .
+T+—=2— -T ~ =0
2 4k, "2 ®

Eq. f is a quadratic in T. Its positive root is given by:

7t 2
1. 1_4_@[%’_%_%}

2 4k, 2
2 ﬁ

2

T =
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2
ie. Ty = =2 4 ("}5*+T02+“2‘£J*L
B B B ) 2Bk

2 2
ie. T(r) = "7} + J (%JQJ - ;fjg Tka ..(5.25)

Eq. 5.25 gives temperature distribution in a solid cylinder with internal heat generation and linearly varying
k. Compare this equation with that obtained for a slab, with temperature at either side being the same, i.e. Eq.
5.10. ‘

Eq. 5.25 gives T{(r) in terms of T, (i.e. Ty, at r=0}.
If we need T(») in terms of T, in Eq. e, C is determined from:
BC.atr=R,T=T,

we get:
T2 R?
C=T,+ A1y + A
2 4.k,
Substituting C in Eq. e, we get a quadratic in T, and solving we get, for temperature distribution:
2 2_,2
-1 1 (RT—r%)
T = — + J[—+T J +q, -(5.26)
ﬁ ﬁ ¢ g Z'ﬁ'ko

53.1.3 Curront corrying conductor. This is a very important practical application. Cooling of current carrying
conductors enhances their current carrying capacity. Knowledge of temperature distribution is required to make
sure that temperatures leading to ‘bum out’ of the conductor are not reached. Conductors have to operate safely
in superconducting magnets, transformers, motors and electrical machinery, since sudden failure of conductor
may lead to conditions that are unsafe to the operator as well as the machine.

In the case of current carrying conductors, uniform internal heat generation occurs due to Joule heatmg

Consider a conductor of cross-sectional area, A, and length, L. Let the current carried be I (A). Let the
electrical resistivity of the material be p (Ohm x m).

Then, heat generated per unit volume = Q,/Volume of conductor,
where, Qg is the total heat generated (W).

Q, =1" 2.R where R = electrical resistance of wire, {Ohms)

But, R=2L
AC
ol
22
Theref R (A ] LY W/m’®
erefore, = At — | g,
“Tar AL \a)”
i = 1/A,, is known as the ‘current density’. Note its units: A/ m?
-2
ie. . dg = i2p= L— where k, = i = electrical conductivity, (Ohm m)™’
(3

Therefore, temperature distribution in a current carrying wire (of solid, cylindrical shape} is given by Eq.
5.19, viz.

_ g p2_ 2
TE) =T, + AR - ~(5.19)
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Substituting for 4., we get:
2
T =T,+ 2@ - ~(5.19)

Eq. 5.19a gives the temperature distribution in the current carrying wire, in terms of the surface temperature,
T, Maximum temperature, which occurs at the centre, is obtained by putting r = 0 in Eq. 5.19 a. i.e.

2 p2
=T, + E__FLR_
4-k

And, from Eqgs. 5.19a and 5.20a, we get:

Tmax - Tw R

Note that the above equation for non-dimensional temperature distribution in a current carrying wire is the
same as Eq. 5.21.
Example 5.7. (a) A 3.2 mm diameter stainless steel wire, 30 cm long has a voltage of 10 V impressed on it. The outer
surface temperature of the wire is maintained at 93°C. Calculate the centre temperature of the wire. Take the resistivity
of the wire as 70 micro-ohm x cm and the thermal conductivity as 22.5 W/{mK).
(b) The heated wire in the above example is submerged in a fluid maintained at 93°C. The convection heat transfer
coefficient is 5.7 kW/(m?K}. Calculate the centre temperature of the wire.
Solution. See Figure Example 5.7.

....(5.20a)

d=3.2mm, k= 22.5 W/(mC) o = 3.2 mm, k = 22.5 WH{mC)

-8
p=T0x10" Chmxm 2 p=T0x10" Ohmxm
, = 5700 Wi(m’K) :
T,=93°C

T, =93°C

FIGURE Example 5.7(a) Wire with an impressed FIGURE Example 5.7(b) Wire with an impressed
voltage, T, is known voltage, T, is known
Data:
d,:=00032m R:= % mie R=16x10"m L=03m p=70x10%0hmxm k:=225W/(mQ)

2
T, =93°C T, = 93°C k= 5700 W/{m?C) E=10V A= JI-%, m* Resistance := p-% Ohm

ie . Resistance = 0.026 Ohm (electrical resistance of the wire)
= ﬁ;ﬁﬂ@ {define power generated due to current flow)

ie. P=383x10° W ..power generated
= % W/m? (define the internal heat generation rate)

ie. q, = 1587 x 10° W/m’ (the internal heat generation rate)

Case (a): Wire surface temperature is given;
To calculate centre temperature (i.e. maximum temperature):
We have, from Eq. 5.20:
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T i= T + qK-RZ-H

ie Tinax = 138.15°C ...centre temperature of wire
Case (b): Wire submerged in a fluid;
To calculate the centre temperature (i.e. maximum temperature):

We have, from Eq. 5.23:

R 4y o
Toax = Tg + +——-R
R TR
ie. T ey = 360.929°C ...centre temperature of wire

Example 5.8. Meat rolls of 25 mm diameter, k = 1 W/(mC) are heated by microwave heating. Centre temperature of the
roll is 90°C. Surrounding temperature is at 30°C. Heat transfer coefficient at the surface is 25 W/ (m*C). Find the micro-
wave heating capacity required in W/ m’.
Solution.
Data:

R:=00125m k:=1W/mC) T,=90°C T,:=30°C h:=25W/(m%Q)

R=12.5mm, k= 1 WK{mC)

(;ha =25 w;(m?'L)Z
T7,=90°C | Ta=30°C__—7 \
//
T
FIGURE Example 5.8 Microwave heating of meat roll

Remember that for the cylindrical roll, maximum temperature occurs at the centre.
We have, from Eq. 5.23:

‘R g, R?
=T+ 2L
2h 4k
, R R
To=Tot g [E+ZE]
To - Tu 3 .
ie. = W/m {define gq,)
g x & ofine g,
AT
2k 4k
Le. g, = 207 x 10° W/m* (= 207.6 kW/m’ ..required microwave heating capacity.)

Example 5.9. A long cylindrical rod of diameter 200 mm with k = 0.5 W/(mK) experiences uniform volumetric heat
generation of 24,000 W/m?, The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and k of 4
W/(mK). Outer surface of the sleeve is exposed to cross flow of air at 27°C with convection coefficient of 25 W/(m’K).
(i) Find the temperature at the interface between the rod and the sleeve and on the outer surface.
(ii) What i3 the temperature at the centre of the rod?
(iii) What is the temperature at mid-radius of the rod?
(iii) Sketch the temperature distribution.
Solution. See Figure Example 5.9.
Data:
R,=01m R,:=02m L:=1m k= 0.5 W/(mK) k, := 4 W/{mK) T, =27°C
hy =25 W/(mK) g, 1= 24000 W/m®
Let T,, T,, and T be the cenire temperature of the rod, interface temperature between the rod and the sleeve, and
the outer surface termperature of sleeve, respectively, as shown in Fig. 5.16.
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ky = 4 Wi(mK) For the inner cylindrical rod with heat generation, we have, from

Eq. 5.20:
9 ky = 0.5 WI(mK) 4 ,
4y = 24 kWim® -1+ 2R {a)
4.k
h,=25 Wl(mzK) Here, however, T; is not presently known. But T, is related to the
T, =27°C known ambient temperature T, by considering the steady state heat

transfer from the inner cylinder through the outer sleeve by conduction
and then to the ambient fluid by convection.

T -T,
ie. Q=— "% ..(b)
Ralmve + Rccmr
d, =0, where, R, = thermal resistance of sleeve, and R, = convective
< > resistance on outer surface of sleeve
d;=04m First, find Q, the steady state heat transfer rate = heat generation
g rate in the cylinder
FIGURE Exarmple 5.9 Encapsulated rod )
with heat generation ie. Q:=nR{LgW {define Q, the total heat generated)
ie, Q=753982 W (total heat generated rate.)
Thermal resistances:
R
Rypere = ——2 C/W (define thermal resistance of sleeve)
2.7k L
ie. Rypeve = 0.028 C/W (thermal resistance of sleeve)
1 .
and, . Roopw = ———— C/W convective resistance on the outer surface of sleeve
W ( i itface of sleeve)
ie. Reony = 0032 C/W {convective resistance on the outer sutface of sleeve.)
Temperatures T;, T, and T
From Eq. b:
Ty i= Q(Ryeeve + Regny} + T, °C (define T, the interface temperatire
between cylinder and sleeve)
ie. T, = 71.794°C (the interface temperature between
cylinder and sleeve.)
To find T
4 _Tz ; ’
We have: = —= W ~applying Ohm’s law to the sleeve
Rsleeve
ie. T, =T - QRyeeve °C define T,
e T, = 51°C (temperature on the outer surface of sleeve.)
To find T,:
From Eq. a:
T =T qK R12 o
o= T+ aE C (define T, the centre temperature)
"
ie. T, =191.794°C (centre temperature of cylinder.)

Temperature at the mid-radius of the rod, i.e. at r = 0.05 m:
For a cylinder with heat generation, temperature distribution is given by Eq. 5.19:

ie. T() = T, + %-(RZ N {5.19)
For the present case, this equation becomes:
q
Ty =T, + (R} -1} {define T(r)
4k _ .
Therefore, T(0.05) = 161.794°C ’ {temperature at mid-radius of the rod.)
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To sketch the temperature profile:
Temperature profile for the rod with heat generation is given by:

q
T =T, + 4_—‘*"(1-(R]2 e

And, temperature profile for the cylindrical shell of sleeve (with no heat generation} is given by Eq. 4.34, Le.

T, -T,
tr) =T + —2— !_n{—r‘—) where r, = any radius within the sleeve.
In B 1
R,

To sketch the temperature profile in the rod, define a range variable r, varying from 0 to 0.1 m, with an increment
of 0.005 m. Then, choose x—y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with r
and T(7), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig. Ex. 5.9(b).

r:=0,0.005 .., 01 {define a range variable r.starting value = 0,

next value = 0.005 m and last value = 0.1 m)

To sketch the temperature profile in the sleeve, define a range variable 7,, varying from 0.1 to 0.2 m, with an

increment of 0.005 m. Then, in the above graph, on the x-axis place holder, put a comma after r, and enter 7, and on the

y-axis place holder, put a comma after T{r) and enter #{r,). Click anywhere outside the graph region, and immediately
both the graphs appear.

r,:= 0.1, 0.105, .., 0.2 (define a range variable r..starting value = 0.1,

next value = 0.105 m and last value = 0.2 m)

T{r) for rod with heat generation and sleeve

180 \\

170 \ r, ry in metres and
160 T(n, #{r,) in deg.C

-

60 TR=

50

LA

FIGURE Example 5.9(b)

In the above figure from r = 0 to r = 0.1 m, the graph shows the temperature profile within the solid rod with
internal heat generation; from the radius of 0.1 m to 0.2 m, the graph shows the temperature profile within the
cylindrical sleeve placed over the rod.

Note that at 7 = 0, T, = 1918°C,at r=01m, T; = 71.8°Cand at r =02 m, T; = 51°C.

5.3.2 Hollow Cylinder with Heat Generation
Hollow cylinder geometry has significant practical applications. Many times, nuclear fuel rods are made of hol-
low cylinder geometry where the heat generated is carried away by a (liquid metal) coolant flowing either on the
inside or outside the tubes. Hollow electrical conductors of cylindrical shape are used for high current carrying
applications, where again, cooling is done by a fluid flowing on the inside. There are annular reactors, insulated
either from inside or outside, used in chemical processes.

We shall study heat transfer in a hollow cylindrical system, with different boundary conditions.
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53.2.1 Hollow cylinder with the inside surface insulated. Consider steady state, one-dimensional heat transfer in a
hollow cylinder of length L, inside radius # and outside radius r,. with a uniform internal heat generation rate of
gy (W/ m®). Thermal conductivity, k is constant. Let the inside surface be perfectly insulated; that means, alt the
heat generated in the cylindrical shell has to move only outwards, in the positive r-direction. Let the
temperatures on the inside and outside surfaces be T, and T, respectively. See Fig. 5.7.
Assumptions:
(i) Steady state conduction
(ii) One-dimensional conduction, in the r direction only
(iiiy Homogeneous, isotropic material with constant k
(iv) Uniform internal heat generation rate, g, (W/m?).
With the above stipulations, the general differential equation in cylindrical coordinates (see Eq. 3.17) reduces
to:

2
4T 14T 4
dr? v odr  k

Integrating Eq. a twice, we get the general solution for temperature distribution, namely, Eq. 5.18, as done in
section 5.3.1:

=0 -{a)

2
— g7
T(r) = —%— + CyIn() + G .(5.18)
4k
Insulated k g, Insulated
TO
-
Ty _'_>|
FIGURE 5.7 Hollow cylinder with heat FIGURE 5.8 Hollow cylinder with heat
generation, inside surface insulate generation, inside surface insulated

Eq. 5.18 is the general relation for temperature distribution along the radius, for a cylindrical system, with
uniform heat generation.

C, and G, the constants of integration are obtained by applying the boundary conditions.

In the present case the B.C.’s are;

B.C.(i):atr = T =T, and dT/dx = 0 (since inner surface is insulated), and

BC.(iyatr=r,T=T,

Get C; and C, from these B.C.’s and substitute back in Eq. 5.18 to get the temperature distribution, This is left
as an exercise for the student (See Example 5.11 for procedure of working out a numerical problemy).

We shall, however, derive the expression for temperature distribution by a simpler method of physical
consideration and heat balance:
Alternative Method
See Fig. 5.8.

Consider any radius  in the cylindrical shell as shown.
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Since the inside surface is insulated, heat generated within the volume between 7 = r; and r = r, must travel
only outward; and, this heat must be equat to the heat conducted away from the surface at radius r.

Writing this heat balance,
dT
ST rz . r_z L =—k2.7r L —
g 7 7 dr

where, dT/dr is the temperature gradient at radius r.

ie. dT:i&E—.ﬂ_ qir.dr
2k r 2k
Integrating Tty = B0 1n() - q‘; e .{b)

Eq. b is the general solution for temperature distribution.

The integration constant € is obtained by the B.C.:
Atr=r,, T=T,

Applying this B.C. to Eq. »

2 2
TGlo G

C=T,+ ——=——.1In(r,}
4k 2-k
Substituting value of C back in Eq. b we get,
2 2 2 2
et dg'r 4T qgh
T(r) = In(r)--+—+T, + = - ———In(%
() = S0 - A T e e ()

2.
) _2 2 z
ie. TO) =T, + qi . ;[(%] -2.In [r?) - (;] ] (527}

Eq. 5.27 gives the temperature distribution in a hollow cylinder with heat generation, insulated on the inside
surface, in terms of the outer wall temperature, T,,.
Putting r = *;and T = T, in Eq. 5.27, we get,

T’=T0+_qgﬁ- Ll 22|l |-1
4.k 7 r
ie. 71, = B[] —onf -1 .(5.28)
4-k r T

Eq. 5.28 is important, since it gives the maximum temperature drop in the cylindrical shell, when there is
internal heat generation and the inside surface is insulated.

If either of T, or T, is given in a problem, then the other temperature can be calculated using Eq. 5.28.
Convection boundary condition:
If heat is carried away at the outer surface by a fluid at a temperature 7, flowing on the surface with a convective
heat transfer coefficient, i,, then, it is the fluid temperature that is known and not the surface temperature, T,. In
such cases, we relate the surface temperature and fluid temperature by an energy balance at the surface, i.e. heat
generated within the body and conducted to the outer surface is equal to the heat convected away by the fluid at
the surface.

ie. qg-fr-(rﬂz—.-rjz)L:ha-Z-Jr-rJ,-L-(Tu~Tﬁ)
2 2
golty —
ie. T,=T,+ i(—"—’—) )
2hy1,




Substituting the value of T, from Eq. ¢ in Eq. 5.27, we get:

2 2 2 2
N ‘?g'("o -4 ) qg-rf 7, i r
Tn=T,+ 2T + " . ? - 2-]11[ » ]«- ~r— -(5.29)

¥ I

Eq. 5.29 gives the temperature distribution in the cylindrical shell with heat generation, inside surface
insulated, when the heat generated is carried away by a fluid flowing on the outer surface.

53212 Anclysis with voriable thormal conductivity. In the above analysis, thermal conductivity of the material was

assumed to be constant. Now, let us make an analysis when the thermal conductivity varies linearly with
temperature as:

KT) = k(1 + A1),
where, k, and £ are constants.
Again, considering Fig. 5.8, we have, from heat balance:
dT
2,2
A -1 L=-k(Ty2-mr L-—
gor(r? 1) (1) -

where, 4T/dr is the temperature gradient at radius r.

2 2
A -r
ie. k(T)-dT = M-dr
¥
Substituting for k(T),
2
-r
k{1 + 8-T)dT = A7 Ar gir-dr
: 2 r 2
2 2
: BT ag 9e7
Integrating, T+ = ‘In(r) - +C we(d
grating R TR ey (@
In Eq. d, C is the integration constant. It is obtained by applying the B.C.,
At r=r, T=T,
Applying this B.C. to Eq. d:
2 2 g2
c=TJ+&- B T In(r) + &7
2 2k, 4-k,

Substituting value of C back in Eq. d:

T2 72 2 2 42 2
AT +T- b.]n(r)_qg +T;+ﬁT1 _Ggh _ln(?,i)+qg flog
2 2k, 4k, 2 2k, 4k,
T? —gr (1Y T2
ie. AR kS0 | . IR . Y I Lt B {e)
2 4-k, t t 2

Eq. e is a quadratic in T. Its positive root is given by:

—a. .t 2 2
-1+ 1+4._._..4._M. L - 2.1n 1 -1 +T'.+ﬁ—T;
2 4k0 i n 2

2.

N [
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2 2 2
- It SO | TS I | S | ) P Y SN (L O
ie. 0= - (ﬁm] oy (n] 21n(ri} 1 (5.30)

Eq. 5.30 gives the temperature distribution in a hollow cylinder with internal heat generation when the
inside surface is insulated and the thermal conductivity varies linearly with temperature.
5323 Hollow cylinder with the outside surface inswlited. Consider steady state, one-dimensional heat transfer in a
hollow cylinder of length L, inside radius r; and outside radius r,, with a uniform internal heat generation rate of
g, (W/ m"). Thermal conductivity, k is constant. Let the outside surface be perfectly insulated; that means, all the
heat generated in the cylindrical shell has to move only inwards, in the negative r-direction. Let the temperatures
on the inside and outside surfaces be T; and T,, respectively. See Fig. 5.5.
Assumptions:
(i) Steady state conduction
(ii) One-dimensional conduction, in the r direction only
(iii) Homogeneous, isotropic material with constant k T Insulated
(iv) Uniform internal heat generation rate, g, W/ ms).
With the above stipulations, the general differential equation in
cylindrical coordinates (see Eq. 3.17) reduces to:

4’7 14T g
U + —_—— + LS
drt rdr k

Integrating Eq. a twice, we get the general solution for tem-
perature distribution, i.e. Eq. 5.18, as done in section 5.3.1:

=0 (&)

2
—qgt )
T(r) = + Cy-In(r) + C; ...(5.18}
4-k

Eq. 5.18 is the general relation for temperature distribution »
along the radius, for a cylindrical system, with uniform heat G
generation. ) . FIGURE 5.9 Hollow cylinder with heat

C, and C,, the constants of integration are obtained by apply- generation, outside surface insulated
ing the boundary conditions.

In the present case, the B.C.’s are: T Insulated

i

BC.(iatr=r;T=T;, and

B.C.lii): at r = r, T= T,, and dT/dx = 0 (since outer surface is
insulated).

Get C; and C, from these B.C.’s and substitute back in Eq. 5.18
to get the temperature distribution. This is left as an exercise for the
student {see Example 5.12. for procedure of working out a
numerical problem).

We shall, however, derive the expression for temperature
distribution by a simpler method of physical consideration and heat
balance:

Alternative Method:
See Fig. 5.10.

Consider any radius r in the cylindrical shell as shown. T >

Since the outside surface is insulated, heat generated within
the volume between r = 7, and r = r, must travel only inward; and, FIGURE 5.10 Hollow cylinder with heat
this heat must be equal to the heat conducted from the surface at generation, outside the surface insulated
radius 7.
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Writing this heat balance,

2 2y, dT
qg-fr-(ro —-r )-L _k-z-n-r-L-E

where, dT/dr is the temperature gradient at radius r.
Note that the term on the RHS has positive sign, since, now, the heat transfer is from outside to inside, i.e. in
the negative r-direction {(because the outside surface is insulated).

ie dT = Z-qIf-r '}:2 - rz)- dr (a)
Integrating:
2 z
ety UT s
T(ry = JIn{ry - C (b
() = =2 I =~ 4 (b)

Eq. b is the general solution for temperature distribution. The integration constant C is obtained by the B.C.:
At r=r,T=T,
Applying this B.C. to Eq. b:

2 2
T gy + B
2k k
Substituting value of C back in Eq. b:
2 2 2 2
HgTo qg G To qe %
() = Ingr) - +T,- In(r) + £
" k n{r) ik T ok n(r) + ik
q g r YV i
ie. T(r)=T, + 2. 2-1n[gJ+[’iJ —[iJ .(5.31)
-k 4 16 To

Eq. 5.31 gives the temperature distribution in a hollow cylinder with heat generation, insulated on the
outside surface, in terms of the inner wall temperature, T,
Putting r =7, and T = T, in Eq. 5.31, we get,

97 7 5 ’
T,-T, =22 2-1{—“] + (—’J -1 (5.32)
4-k 7 %
Eq. 532 is important, since it gives the maximum temperature drop in the cylindrical shell, when there is
internal heat generation and the outside surface is insulated.
If either of T, or T, is given in a problem, then the other temperature can be calculated using Eg. 5.32.
Convection boundary condition:
If heat is carried away at the inner surface by a fluid at a temperature T, flowing on the surface with a convective
heat transfer coefficient, i, then, it is the fluid temperature that is known and not the surface temperature, T;. In
such cases, we relate the surface temperature and fluid temperature by an energy balance at the surface, i.e. heat
generated within the body and conducted to the inner surface is equai to the heat convected away by the fluid at
the surface.

ie. Go 2w r2—r])L=h 2 mr L(T,- T,

2_,2

q. |ty —#
ie T,=T, + g_(a-l—) ..{c)

241,0n
Using Eq. ¢ in Eq. 5.31, we get:
2 .2 2 2 2
G-\t — 1 " .
T(r)=T,+ g(ﬂ r)+qé’ Cl2m| D+ L -] L -(5.33)
2-h; 5 4k n)o\n T
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Eq. 5.33 gives the temperature distribution in a hollow cylinder with heat generation, insulated on the out-
side surface, cooled by a fluid on the inside, in terms of the fluid temperature, T,

5324 Analysis with voriable thermal conductivity. In the above analysis, thermal conductivity of the material was
assumed to be constant. Now, let us make an analysis when the thermal conductivity varies linearly with tem-
perature as:

KT = k(1 + AT,
where, k, and /f are constants.
Again, considering Fig. 5.10, we have, from heat balance:

2 2y, _ dT
g (rd =7 ) L=k@2mrL .

where, dT/dr is the temperature gradient at radius r.
Separating the variables and substituting for k(7).

[

2
g2 2 _fehe dr g
kA1 + BT)dT = E(r - )dr = A — rdr

A
2 2
3 ﬁ TZ q‘;'ru C)“;‘T -
Integrating: T+ == An(r) - 5 +C -(d
Branne 2 T2k MO G (d)
In Eq. d get the integration constant, C from the B.C.:atr = 7,, T=T,
T2 -r,2 ,-r,2
ie. C=T,+ Ej:; - qg—‘-ln(x,)+ g o
2 2.k, 4.k,
Substitute value of C back in Eq. d:
R g BT 4t 917
E v |3 ey T e S () + S =0 --(e]
2 2.k, ") 4k ¢ 2 2k, ) 4-k,

Eg. e is a quadratic in T. lts positive root is given by:

2 2 2 2 2
i ' A, ¥ o
—1+Jl+4-£‘[qi——u--hl(r)qfk—.+n +LB,IL_ i -]n(rg)+gg ]

21 2k,
T(r) = 7

After some manipulation, we get:

2 2 2
it S SO PR PYS/ R 0
L s R B

Eq. 5.34 gives the temperature distribution in a hollow cylinder
with internal heat generation when the outside surface is insulated
and the thermal conductivity varies linearly with temperature.
5325 Hollow cylinder with both the surfuces maintoined ot constant
temperatures. Consider steady state, one-dimensional heat transfer
in a hollow cylinder of length L, inside radius r,and outside radius
r,, with a uniform internal heat generation rate of g, (W/ m®).
Thermal conductivity, k is constant. Let the temperatures on the in-
side and outside surfaces be T, and T, respectively. The cylinder is
losing heat from both the surfaces.

See Fig. 5.11.

FIGURE 5.11 Hollow cylinder with heat
generation, losing heat from both surfaces
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Assumptions:
(i) Steady state conduction
{ii) One-dimensional conduction, in the r direction only
{iii) Homogeneous, isotropic material with constant k
(iv) Uniform internal heat generation rate,
g, (W/ m?),
With the above stipulations, the general differential equation in cylindrical coordinates (see Eq. 3.17 reduces
to:

£T 14T 45
drr v dr  k

Integrating Eq. a twice, we get the general solution for temperature distribution, i.e. Eq. 5.18, as done in
section 5.3.1:

=0 ...(a)

2
-_— qg ¥
T(r) = + Cp-Indry + G, {5.18)
4-k
Eq. 5.18 is the general relation for temperature distribution along the radius, for a cylindrical system, with
uniform heat generation. C; and C,, the constants of integration are obtained by applying the boundary
conditions.
In the present case, the B.C.’s are:
BC.(i)atr=r,T=T, and
BCGiyatr=r,T=T,
Get Cy and C, from these B.C.’s and substitute back in Eq. 5.18 to get the temperature distribution.
From B.C.(i} and Eq. 5.18: :

T, = 48-1;1 + Gy Ingr) + G, -(a)
From B.C.(ii}) and Eq. 5.18&:
2
-_— q .r
T, = 43*0 + Cr-In(r) + G, (b

Subtracting Eq. a from Eq. b:

T,-T = q—g-(r,-z —roz] + Cl-ln(r—"J
1

ie. G =
In| %2
"

And, from Eq. a:

Temperature distribution in the cylindrical shell is obtained by substituting C, and C, in Eq. 5.18.
After lengthy algebraic manipulations, we get,
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2
|t |~ LA
()T _ {n]ﬂg (7 ) [r] m
= _— N - 2
T,-T, h{i] 4k (T,-T) ln[ro] {_rp] .
n i %

Position and value of maximum temperature:

Position of maximum temperature must lie somewhere between r; and r,, since heat is flowing to both inside and
outside surfaces. Let the position be at a radius of r,,. Then, r,, is found out by differentiating the expression for
T(r) given by Eq. 5.35 w.r.t. r and equating to zero. Then, this value of r,, is substituted back in Eq. 5.35 to obtain
Trmax- The procedure will be iltustrated in an example, later.

Heat transfer to both surfaces:

Knowing the temperature distribution, heat transfer rate is easily determined by applying the Fourier’s law.

....(5.35)

Heat transfer rate at the inner surface, QI, wp, = —k(2anl) @dr/an, _,

Heat transfer rate at the outer surface, Ql,_ == k(2mr LY (dT/dn), - ",

Note that heat transfer to inner surface will be negative since the heat flow is from outside to inside, i.e. in
the negative r-direction. )

Check: Sum of the amount of heats flowing to the inner and outer surfaces must be equal to the total amount of
heat generated in the cylindrical shell.

Convective boundary conditions:

If heat is carried away at the inner surface by a fluid at a temperature T, flowing on the surface with a convective
heat transfer coefficient, h,, and on the outer surface, by a fluid at a temperature T, flowing on the surface with a
convective heat transfer coefficient, i, then, the surface temperatures can be related to the fluid temperatures by
making an energy balance at the surfaces. i.e. heat generated within the body and conducted to the inner and
outer surfaces must be equal to the heat convected away by the fluid at the respective surfaces.

See Example 5.10 for procedure of working out a numerical problem.

Alternative Method:
See Fig. 5.11.

Since heat is transferred from both the inside and outside surfaces, maximum temperature, T, must occur
somewhere in the shell. Let it occur at a radius 7,,. Obviously, r,, lies in between 7; and 7,. Now, note that surface
at r,, is an isothermal surface; also, since maximum temperature occurs at #,,, no heat will cross the surface at 7,
i.e. dT/dr at r = r,, will be zero. This also means that surface at 7, may be considered as representing an insulated
boundary condition.

So, the cylindrical shell may be thought of as being made up of two shells; the inner shell, between r = r; and
t = r,,, insulated on its ‘outer periphery’ and, an outer shell, between r = r, and r = r,, insulated at its ‘inner
periphery’.

Then, maximum temperature difference for the inner shell and outer shell can be written from Eq. 5.32 and
5.28, respectively. S0, we write:

For the ‘inner shell’ (insulated on the ‘outer” surface):

q '?’2 ] . 2
T, -T,= =21 z-m(ﬁ}[’—'] -1 (@)
4-k % Tt

Eq. a is obtained by replacing 7, by r,, and T, by T, in Eq. 5.32.
For the ‘outer shell’ (insulated on the ‘inner’ surface):

. 2 i 2
T, -T,= ﬂi.%. (r"_] —Z-M[-E&J - 1} (b}

Eq. b is obtained by replacing r; by r,, and T; by T, in Eq. 5.28.
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Subtracting Eq. a from b:

P [ 2 2
T-T,= %2, (-ro-) _2'm[r_nJ_l_2'1“(iJ_(iJ +1
4-k T Y 7 T

q T [ : : ,
ie. T,-T,=220% | 15| sopm|-2m|= Q)
4-k Tm m L6 b
Eq. c must be sclved for r,,. We get:
2
dg 2\, g Tm tm T
T~ T, = -5 (12 ~ )+ 20n!m B
LY 4k (ro :;) a-k [rg For
q q T f,
e i )
ie. T-—T:ig-—-(z-r;)+2rm In| 2
! . a 4k r
Le. QL__M - (foz—fi +2rm J
g
2
oo Gmtyak (0-7)
t T
2dal L] 2.l X
% n(rOJ ("ﬂ]
2 2
Go-lrs - v )-4k(T, - T,)
ie. rm2 = i (G ! ) ! °
T,
2.n| 2
K (rJ
2 2
Go-lty — 1 | -4:k(T, - T,)
ie. = |- (% ) M (5.36)

F,
w2

Substituting the value of r,, from Eq. 5.36 in either of Egs. a or b, we get the maximum temperature in the
sheil.

Then, temperature distribution in the inner shell is determined from Eq. 5.32 and that in the outer shell is
determined from Eq. 5.28.

When T; and T, are equal:
When the cooling on the surfaces is such that both T, and T, are the same, an interesting situation develops: then,
it 1$ seen from Eq. 5.36 that, position of maximum temperature in the shell is given by:

ie. r, depends only on the physical dimensions of the cylindrical shell and not on the thermal conditions.
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For example, for a hollow cylinder with r; = 5 cm and r, = 10 ¢m, when the inside and outside surfaces are
maintained at the same temperature (T, = T,), the maximum temperature in the sheil occurs at a radius of:

ie. ty = 7.355 cm.

This result is valid, whatever may be the value of uniform heat generation.
Exomple 5.30. A hollow cylinder 6 cm ID, 9 cm OD, has a heat generation rate of 5 x 105 W/m?>. Inner surface is
maintained at 450°C and outer surface at 350°C. k of the material is 3 W/{mK).

(i) Determine the location and value of maximum tem-

perature. k=3 WI(mK) s
(ii) What is the temperature at mid-thickness of the qg=5MWIrr|
shell?

(iii) Determine the fraction of heat generated going to the
inner surface, and
{(iv) Sketch the temperature profile. T, = 450°C

Solution. See Figure Exampte 5.10.
Data:
r; =003 m r, = 0.045 m L=1m
T; := 450°C T, = 350°C k=3 W/(mK)

4y = 5% 10° W/m?®

Position of maximum temperature can be immediately
determined from Eq. 536 and then, the value of maximum = 0045 m !
temperature may be determined from Eq. 5.28 or 5.32. o

However, let us work out this problem from first princi-  FIGURE Exomple 5.10 Hollow cylinder with heat
ples and then, verify the results from the formulas already generation, losing heat from both surfaces
derived.

Temperature distribution:
For the assumption of one-dimensional, steady state conduction with heat generation in a cylindrical geometry, we have
the governing differential equation:

2
ST 147

+ =0 (&
d rodr k (a)
.- d*T 4T g7
Multiplying by r: r-;r—f + = + i
« E. r‘—dz _ _ qg r
e dri dr Tk
Integratin AT gt
ntegrating: Bl
R dr 2k !
i ar  —gr G
ie. iy + . (b}
,qg,rz
Integrating again: T(r) = + G In(r) + G, ...(5.18)

Egq. 5.18 gives the temperature distribution. C; and C, are determined from the B.C.’s:
B.C(i:atr=r, wehave T=T,;

B.C(i):r=r, wehave T =T,

From B.C.(i) and Eq. 5.18:
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2
'qg'ri

T, = W + Cnfr) + G ()
From B.C.{ii} and Eq. 5.18:
T, T8 L e ngy 4 C (d)
o 4.k 1 [ 2
Subtracting Eq. ¢ from Eq. d:
4 T
T, - Tj = ﬁ-(rf - l’az) +Ci-ln {—!J

(0 =T+ g2 (72 = 17)

ie. C = (define integration constant C,)
In [I'i]
r
ie. C, = 909.449 (value of C,, after substituting numerical values from data)
and, from Eq. c:

. 9
gz T Trgp e )

Cpi=Ti + . -In(r;) (define integration constant C,)
' tn (r—"]
fi
ie. C, = 4.01404 x 10° (value of C,, after substituting numerical vaues from data}
Substituting C; and C, in Eq. 5.18, we get the temperature distribution as:
2
—a.-F
() = 43.:: + CyeIn(r) + G,

ie. T(r) := — 4.16667 x 10°-r% + 909.449 In(r} + 4.01404 x 103 (e

Eq. e is the desired temperature distribution in the shell as a function of radius, r.
Position and value of maximum temperature:
To get the position where maximum temperature occurs, differentiate Eq. e w.r.t. r and equate to zero. Let the location
be at a radius r,,. Then, substitute r,, back in Eq. e to get value of maximum temperature, T,

Differentiating Eq. e w.r.t. r and equating to zero:

ir(r) 416667 x 10527 + 2049 0
dr r
e . 909.449
e Ty 2416667 x 10°
ie r, =0.033 m (position of maximum temperature}

And, substituting r,, in Eq, e, we get T,
T(r,) = 457.935°C (value of maximum temperature)
Note: In Mathcad, there is no need to actually differentiate Eq. e and equate to zero, then solve etc. First, define 7"(r) as
the first derivative of T(r) = dT(r)/dr and then use the solve block to get the root of T'(r} = 0. For doing this, assume a trial
value of r to start with. Procedure is shown below:

T(r) := %T(r) (define first derivative of T(r))
r=003m (trial value of r)
Given
T'(r) = 0
Tax = Find (#) (define ..}
ie. Frax = 0.033 m (position of maximum temperature...verified.)
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Check: check also from the direct formula Eq. (5.36) for r,.:

QS'(rﬂl - r’2)_ 4-k (T: - TG)
r = .

m " r
qN-Z'ln(fJ

ie 7, = 0.033 m (position of maximum temperature...checks.)
Check the maximum temperature from Eq. 5.28: '
We have, for a shell insulated on the inner surface:

q v ’

gl o %

T =2 L 2] _2.nl e |-

T,-T, e |:(r,J n[f;J 1:| ..(5.28)

Apply this formula for the ‘outer shell’, i.e. between r = r,, and r = r,,: Now, replacing T, by the maximum tempera-
ture T, and r, by r,,, we get:

.{5.36)

mr

2 2
T
T,-T,= ﬂi_;(_. [’_J _2-1n[iJ-1
N \rm Tt

72 :

ie. Tpi=T,+ qi e (r—"} -2n (Lle (define T, the maximum temperature)
. T Py

ie. T, = 457.931°C (value of maximum temperature...checks.)

Temperature at mid-thickness i.e. at r = 0,0375 m:
Substitute r = 0.0375 in Eq. e for T (r):
ie. T{0.0375) = 442.004°C (temperature at mid-thickness of shell)

Fraction of heat generated going to inner surface:
First, find the total heat generated in the shell:
Qut = 7-(17 =77} -L-g,, W ...define the total heat generation in the shell = (Volume x 4,)

ie. Qi = 1.767 x 10 W (total heat generated in the shell)
Heat going to inner surface is equal to the amount of heat generated between r = r; and r = r,,, since no heat crosses
the isothermal surface at r,,.

Qinner = & (r,,’, - r,-z) -Lg, W (define the heat going to inner surface of the shell)
ie. Qinner = 3.006 % 10° W (heat going to inner surface of the shell)
Therefore, fraction of heat going to inner surface:
Fraction = Qe ...define Fraction
tot
ie. Fraction = 0.17 (i.e. 17% of the iotal heat generated goes to the inner surface.)

Note: Heat removed at the inner surface can also be found out by applying the Fourier’s law at r = r;; Remember,
temperature gradient is given by T'(r).

Qioner = k-2 m v L} T(r) W (define heat flow at inner surface.. Fourter's law)
ie. Qinner = — 3.006 x 10° W {negative sign indicates that heat flow is radially inwards.. verified.)
To sketch the temperature distribution:

To sketch the temperature profile in the shell, define a range variable r, varying from 0.03 to 0.045 m, with an increment
of 0.001 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with r
and T(r}, respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig. Ex. 5.10(b).
r:= 0.03, 0.031, ..., 0.045 (define a range variable r.starting

value = 0.03, next value = 0.031 m and

last value = 0.045 m)

Note from the graph that maximum temperature occurs at r = 0.033 m.
Example 5.1k A high temperature, gas cooled nuclear reactor consists of a composite cylindrical wall for which a
thorium fuel element (k = 57 W/(mK)} is encased in graphite (k = 3 W/{mK)) and gaseous helium flows through an
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T{r) in a cylindrical shell with heat generation

500
rin metres and
485 T(r) in deg.C
470
455 — ]
~ 440
T
0 425 \\
410
395
380 \
365 \
350
0.03 0.033 0036 0.039 0042 0.045
r
FIGURE Exomple 5.10(b)
Helium coolant channel annular coolant channel, as shown in Fig. 5.23. Consider conditions
T, =800 K, h, = 2000 W/m?K) for which heltum temp T, = 600 K and coiwective coefficient h, at
: _ the outer surface of graphite = 2000 W/(m™K), If r; = 8 mm, r, = 11
Graphity = grap 1 2
rapn! e'-.kz 3 Wimk) mm, r3 = 14 mm and g, = 10° W/m’, find out temperatures T, and
T Thorium, ky = 57 W/{mK} T,, i.e. at inner and outer surfaces of the fuel element. Also, draw
2 Gg = 10% wim?* the temperature profile in the fuel element and graphite.
T Solution. See Figure Example 5.11.
Data:
insulate ry = 0.008 m ry = 0011 m ry = 0014 m
gy = 10°W/m® k=57 W/(mK) k=3 W/(mK)
T,=600K h:=2000W/(m’K) L:=1m
ﬁm Find out T} and T,.
r1 = 0'011 m Note that heat generation is only in thorium. Inside surface of
2 — 0' 014 - thorium is insulated. So, in steady state, all the heat generated in
fa=uii4m thorium flows out by conduction through graphite shell and then

by convection to helium gas.
Total heat generation rate, (J:
Q= - Volume

FIGURE Example 5.11 Hollow eylindrical
fuel element, encased in graphic and cooled
by helium gas externdlly )
ie. Q=g 7~ rf)- Lw (define g, total heat generated}
ie. Q= 179071 x 10* W (total heat generated in thorium fuel element)
Now, this () is transferred to helium gas coolant. Thermal resistances involved are:
Ry = thermal resistance of the cylindrical graphite shell, and
Reony = convective resistance between helium gas and outer surface of graphite shell.
These two resistances are in series. Total temperature potential, AT = {T, - T,}
Thermal resistances:

r.
In H
r
R, = —2L /W (define thermal resistance of graphite shell)

N 2mk, L
ie R = 0.013 C/W (thermal resistance of graphite shelly
Reorw = h—zi—-——wf C/W {define convective resistance on outside surface of graphite sheil)
PR AN
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i.e. Reony = 5684 x 1072 C/W ; {convective resistance on oulside surface of graphite shell)

Now, we have: Q= _L-L
R('yl + R(unv
Therefore, T, =Q Ry + R, )+ T, K (define T,)
i.e. T,=9308% K (temperature at outer surface of fuel element.)

To get temperature profile in thorium and then, find T;:

T, is the temperature at the inner surface of the fuel element. it is insulated on the inner surface. So, we can apply Eq.
5.27, derived earlier for a hollow cylinder with heat generation, with the inner surface insulated. However, first we will
solve it from first principles and then verify the results from Eq. 5.27:

For the assumption of one-dimensional, steady state conduction with heat generation in a cylindrical geometry, we
have the governing differential equation:

4T 14T 4,
— _+_

+— =0
drt v odr k - (a)
- T dT  ggr
Multiplying by r: S+ —— 22— =0
WHPEYIng BY ¥ rdr2+dr+k
ie. A AT T8
dr dr k
Integrating: r-ﬂ = —qg-rz +C
srtng: a2k
. dT =g v
ie I - ok + . (b)
) . ~ gyt
Integrating again: T(n = o F + Cy-Inf(r} + G, .(5.18)
Eq. 5.18 gives the temperature distribution. C; and C, are determined from the B.C.’s:
B.C.(i}: at r = r;, we have dT/dr = 0, since inner surface is insulated.
BC(iijatr=r, wehave T=T,,
From B.C.(i) and Eq. b
0= “&n + &
2-k, 4
2
+ ¢
ie. Cyi= —— define C
1 2k, (define Cy)
ie. C, = 56.14035 (value of integration consfant C,))
From B.C.(ii) and Eq. 5.18
T, = 4ka’ + Cy-Infry) + Gy
. —Hy 'r22 .
ie. Co=T, + el Cy-In(ry (define C,)
!
ie C, = 1.23714 x 10° (value of integration constant C)
Substituting C, and C, in Eq. 5.18,
T{r) := — 4.38596 x 10°-r? 4 56.14035In(r) + 1237.14 c)...defines T(r)
Eq. ¢ gives temperature profile in the thorium fuel element.
Temperature T, on the inner surface of thorium:
Put r = 0.008 m in Eq. ¢
T(0.008) = 938.007
ie. T, = 938.007 K (temperature on the inner surface of thorium fuel element.)
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Verify from Eq. 5.27:

We have: .
2 2 2
TN =T, + M[(r_ﬂJ -2-In (r_ﬂj _{LJ } {5.27)
4-k T r 7

2 2 2
+4qgH
ie. Ty =T, + —20 |[2 —2-|n['—2J— Lz (Eq. 5.27, with notations of this problem)
4k |ln r i
i.e.  T(0.008) = 938.012 K (temperature at the inner surface of the fuel element...verified.)
Check:
Heat flux at the interface must be the same for thorium as well as graphite:
, dT(r) di{(r,)
£, -kt =k —=
e dr dr

at r = r, = 0.011 m, where T(r) is temperature profile for thorium and #(r,) is temperature profile for graphite.

Temperature profile for thorium is already obtained as:
T(r) = — 4.38596 x 10°-+? + 56.14035 In(r) + 1237.14
Temperature profile for graphite is, from Eq. 4.34 for a cylindrical shell:

Hr) =Ty + Lo (EJ (Eq. 4.34, with notations of this problem)
In| 2 "
Yy
where, r, = any radius within the graphite shell

Now, define their first derivatives w.r.t. radius:
d

T'(r) == — T(r) and,
dr

, d

tir) = E—;f(rs)

Therefore, heat flux in thorium at r = 0.011 m:

Gerorium = — K- T (0.011) ..define heat flux, from Fourier's law
ie. Grhorium = 2591 x 10° W/m? heat flux in thovium at the interface
Heat flux in graphite at r = 0,011 m:

Ggraphite = — Kz £7(0.011) ..define heat flux, from Fouriet's law
Le. Ggraphire = 2.591 x 10° W/m? ..heat flux in graphite at the interface

Therefore, we observe that heat fluxes are same for thorium and graphite at the interface
(verified.)
To sketch the temperature profiles:
For temperature profile in graphite, we use Eq. 4.34, which was derived for a cylindrical shell with no heat generation.

I,-T, . . .
Hr} =T+ =—=%1n [r_s] ..-4.34, with notations of this problem
In| 2 K
F

where, r, = any radius within the graphite shell.
To sketch the temperature profile in the thorium fuel element, define a range variable r, varying from 0.008 to 0.011 m,
with an increment of 0.0001 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis
and y-axis with r and T(r), respectively. Click anywhere outside the graph region, and immediately the graph appears.
r := 0.008, 0.0081, ..., 0.011 (define a range variable r..starting
value = 0.008, next value = 0.0081 m and
last value = 0.011 m)
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T{r) for thorium, insulated on inside

940
939

r in metres and

938 =y -
TninK

936 Pz
Tin

935 \

234 :

933

932

931 AN
930
0.008 00085 0.009 0.0095 001 0.0105 0.011

r

FIGURE Example 5.11(b)

It may be seen from the graph that at r = 0.008 m, temperature T, is 938.01 K and, at r = 0.011 m temperature T, is
9309 K.

Similarly, to sketch the temperature profile in the graphite shell, define a range variable r,, varying from 0.011 to
0.014 m, with an increment of 0.00001 m. Then, choose x-y graph from the graph palette, and fill up the place holders on
the x-axis and y-axis with r, and t(r), respectively. Click anywhere outside the graph region, and immediately the graph
appears. Fig. Ex. 5.11(c}

r, == 0.011, 0.01101, ..., 0.014 {define a range variable r.starting
palue = 0.011, next value = 0.01101 m
and last value = 0.014 m)

T{(r) for graphite shell (no heat generation)

1000
975

950
925 rg in metres and

900 L #r) inK
875 ™
LIAR
825
800 \\\
775
750
~
725 A

700
0.011 0.0115 0.012 0.0125 0.013 0.0135 0.014
rs

FIGURE Example 5.11{c)

It may be seen from the graph that at at r = 0.011 m, temperature T, is 930.9 K, and at r = 0.014 m, temperature T;
is 701.8 K.
Example 5.12. A hollow conductor with r, = 0.6 cm, r, = 0.8 cm is made up of metal of k = 20 W/{mK) and electrical
resistance per metre of 0.03 ohms. Find the maximum allowable current if the temperature is not to exceed 50°C
anywhere in the conductor. The cooling fluid inside is at 38°C. (Conductor is insulated on the outside).
Solution. See Figure Example 5.12.
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Insulated g - 2g W/(mK}
R=0.03Q/m

T, =T,

max

=50°C

r,= 0.006 m

d

r=0.008 m

FIGURE Example 5.12 Hollow conductor with heat
generation, insulated on outside surface, cooled on
inside

g2

T(r) = %%

+ C-In(n) + G,

Data:
r; = 0.006 m r, = 0.008 m k=20 W/mK
R := 0.03 Ohms/m length ;= 38°C L:=1m
Note: temperature on inside surface is assumed as that of
the fluid flowing, since heat transfer coefficient between the
surface and the fluid is not given.
T, := 50°C (temperature of outer surface ..this
is also maximum temperature in
conductor, since conductor is insulated
on outside)
This is the case of a hollow cylinder with heat genera-
tion, cooled from inside and insulated on the. outside
surface. Both the inside and outside temperatures are
known. So, one can use Eq. 5.32 directly to get g, Once 4, is
known, the current, I can easily be calculated.
We shall, however, solve the problem from first princi-
ples and then check the result with Eq. 5.32:
As shown in the earlier two examples, the general
equation for temperature distribution in a hollow cylinder
with heat generation is given by Eq. 5.18, i.e.

-(5.18)

Eq. 5.18 gives the temperature distribution. C; and C, are determined from the B.C.’s:

B.C.(i} at r = r;, we have T = T, known temperature
B.C.(ii) at r = r,, we have: dT/dr = 0, since insulated.
From 5.18, we have:

T e G
dr 2.k r
From B.C.(ii) and Eq. a:
0=_T G
2-k A
2
ie. | = ()
2.k
From B.C.(i) and Eq. 5.18:
; _qg ] +q
2.k
or, G =T- [
Substituting C; and C, in Eq. 5.18:
7‘?3' qg @ 9s
T(r) = ln +T -
N=—% T 0 3
2
. — g7
ie. T(r) = ——
n 20

o)

+ ge(1.6 x 107°)-In(r) + 38 + B.63559 x 107"g,

(integration constant C;)

o

-ln(ﬁ)—l}

2

..(b)

Eq. b is the desired expression for temperature distribution in a hollow cylinder with heat generation, when the

outer surface is insulated.
Now, by data: at r = 0.008 m (ie. at r = r), T = 50°C
Put this in Eq. b and solve to get 4,
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) - g,-(0.008)°

ie. 50 0 +q, (16 % 107%)-1n(0.008) + 38 + 8.63559 x 10'6-qg

. 5038

ie. gy 1= (0.0087 W/m® {define q,)
(1.6 x 107%)In (0.008) + 8.63559 x 10 ~° - T

ie. g, = 1.088 x 10* W/m? ...heat generation rate

Verify: Verify this result using Eq. 5.32, already derived, for a hollow cylinder with heat generation when the outer
surface is insulated.

z 2
' T,-T,= 2% | B|e[ 5] 1 (532)
4.k t 7,

4k(T, -T)

Therefore Gy o= 5 W/m? {define q,)
rf-[zln [EJ»{E—J —1]
T To
ie. 4, = 1.088 x 10° W/m’ (heat generation rate..verified.)
Maximum allowable current in conductor:
Let the current be [ (A). Then,
Qpen 1*-R

%= Volume a{rl—rH)L

- 02 - :2 -L
Therefore, I:= 1‘ i{-—%L A {define Iy

ie. I="564824 A (maximum allowable current in conductor)

For completeness, let us draw the temperature profile too:

To sketch the temperature profile in the shell, define a range variable r, varying from 0.006 to 0.008 m, with an
increment of 0.0001 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-
axis with r and T(#), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig.
Ex. 5.12(b).

T(r) = |: q;(]r +g,{1.6x107°)-In (r) + 38+ B.6355% x 10‘6-%] .define T(r)...(b)
r 1= 0.006, 0.0061, ..., 0.008 (define a range variable r.starting value = 0.006,
next value = 0.0061 m and last value = 0.008 m)
50 T{r) for hollow cond ins. on outside
"]
.
47
/ rinm and
T(ryin deg.C
44
()
41 v
38
35 ‘ .
6 62 64 66 68 7 72 74 78 78 8

r= 103

FIGURE Example 5.12({b)
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It may be verified from the graph that on the inside and outside surfaces, the temperature are 38°C and 50°C,
respectively.
Note: In Examples 5.10, 5.11 and 5.12, we have solved from first principles, problems with all the three types of B.C.'s,
namely, cylindrical shell losing heat from both the surfaces, cylindrical shell insulated on the inside surface, and cylin-
drical shell insulated on the outside surface. Temperature profiles are also drawn for ail the three cases. Student is
advised to study the procedure followed carefully.
Exomple 5.13. A long, hollow cylinder has inner and outer radii as 5 cm and 15 cm, respectively. It generates heat at the
rate of 1.0 kW/m>, If the maximum temperature occurs at the radius 10 em and the temperature of the outer surface is
50°C, find:
(i) temperature of the inner surface
(i) maximum temperature in the cylinder.
Assume k = 0.5 W/(mC).
m=7 Soution. See Figure Example 5.13.

Data:
k=0.5W/(mK
gy 1 kWI:nS ) t;:=005m r,:=015m fm=01m

Li=1m T,:=50C
k=05 W/(mK) g, := 1000 W/m®
T, temperature of inner surface is to be found out; also,
the value of maximum temperature, T,
. This is a problem of cylindrical shell with heat genera-
tHon and losing heat from both surfaces; position of
r=0.05m maximum temperature is at a radius of 10 cm and it is
> equivalent to insulated surface since no heat crosses the
position of maximum temperature So, the whole shell be-
r,=015m tween the radii of 5 cm and 15 cm may be thought of as
being made of two shells: one inner shell, between radii of 5
FIGURE Example 5.13 Hollow conductor with heat  cm and 10 cm, insulated on the outer surface, and the other,
generafion, losing heat on both surfaces, location of  an outer shell, between the radii of 10 cm and 15 om,
maximum temperature given insulated on the inner surface.

T,=50°C

rp=01m

Y

To find heat generation rate, q,:
We have, for a shell insulated on the inner surface:

g% |(n) 2 '
Ti;vTc,: W TD -2-In T -1 (528)

Apply this formula for the ‘outer shell’, i.e. between r = r,, and r = r,,: Now, replacing T, by the maximum tempera-
ture T, and r; by r,,, we get:

2 2
T s .
ie. Tpi=T,+ q; T |:[£J —2~ln[r—"J— 1:| (define T, the maximum femperature)
- T T
ie T, = 52.195°C (value of maximum temperature)
Temperature at the inner surface, T;
This is easily determined from Eq. 5.36, ie. '

_ #0240~ T)

m ru
\[ "s'“‘(ﬂ

. -(5.36)
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Therefore,

gy - ) —#hq, 21n[}}
4T

T =
4k °

i

{define T;)

ie. T, = 49.014°C (temperature on the inner surface)
Alternatively: .
Instead of applying direct formulas 5.28 and 5.36, which are rather complicated, it is, perhaps, easier to work from first
principles: ’

As explained earlier, the general Eq. for temperature distribution in a cylindrical shell with heat generation is given
by Eq. 5.18:

2

—ggr
T = ik + Cyin{r} + G, ..{5.18)

and, 47 (r) = "% + 5 ..(a)
dr 2.k r .

Eq. 5.18 gives the temperature distribution. C; and C; are determined from the B.C.'s:

Position of maximurm temperature is given as at a radius of 10 cm, ie. at the radius of 10 cm, we have an isothermal
surface and no heat crosses this surface i.e. it is equivalent to the B.C. dT/dr=0at r = 10 cm.

B.C.(i) at r = 0.015 m, we have: T = 50°C

B.C.(ii) at r = 0.01 m, we have dT/dr =0

Applying these two B.C.'s, we get C; and Cy; then substitute C; and C, back in Eq. 5.18 to get the temperature
profile. Then, maximum temperature is found out by simply putting » = 0.1 m in the equation for temperature profile.

From B.C.(ii) and Eq. a:

2
g Tm
C, = define C
o A (define C;)
ie. C, =10 (value of C,, integration constant)
From B.C.(i) and Eq. 5.18:
2
Vq .ro
50 = #:-T + Cpn(r) + G,
. q‘g ’roz
i.e. C, =50+ - Cy-Inf{r,) (define C,)
ie C, = 80.2212 (C,...integration constant)
Therefore, temperature distribution is given by:
2
gyt
() = 43_ — + Cring) +
ie. T(r) := — 5007, + 10-In{r) + 80.2212 ((b) ...equation for temperature distribution.)
Maximum temperature
Putr=0.1min Eq. b:
T(0.1) = 52.195 ...5ame as obtained earlier.. verified.
Temperature at inner surface, T;:
Put 7 = 0.05 m in Eq. b:
T(0.005) = 49.014 ...same as obtained earliler ..verified.

Exomgle 5.14. A thin, hollow tube with 4 mm inner diameter and 6 mm outer diameter, carries a current of 1000
amperes. Water at 30°C is circulated inside the tube for cooling the tube. Taking heat transfer coefficient on the water
side as 35,000 W/(m2C) and k for the material as 18 W/{mC), estimate the surface temperature of the tube if its outer
surface is insulated. Electrical resistance of the tube is 0.0065 ohms per metre length.

Sofufion. See Figure Example 5.14.
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Insulated

k=18 W/(mK)
R = 0.0065 Ohms/m

h, = 35 KW/(m?K)

L

r;= 0.002 m

h 4

r,=0.003m

FIGURE Example 5.14 Hollow conductor with
heat generation, losing heat on inside surface by
convection, insulated on outside

Data:

¥; == 0002 m r, = 0003 m k=18 W/mK
I=1000A R :=00065 Ohms/m length
T, :=30°C h, := 35000 W /{m’K) Li=1m

Problem is to find temperature on outer surface, T,
First, find g,, heat generation rate per unit volume:

%
% Volume
where (3, is total heat generated in the conductor volume.
. I*-R
1.e. q.\, = m ‘N/l'l’l3 (deﬁne qg)

ie. q, =418 x 10° W/m® (heat generation rate per unit volume)
To find outer surface temperature T :

This is the case of a hollow cylinder with heat generation,
insulated on the outside. Therefore, Eq. 5.32 is applicable:

2
S A PR AN
©T 4k i 1,

(5.32)

In the above equation RHS can be calculated, since all quantities on RHS are known.

However, T, is not known vet; it is calculated by making an energy balance on the inner surface, remembering that
all the heat generated in the shell flows only to the inner surface, since the outer surface is insulated:
i.e. heat generated in the shell = heat transferred to water from inner surface by convection
Le. PR =h (2-mrL)(T; - T,)

2
i.e. Ti: "R

ie T, = 44.779°C
Now, from Eq. 5.32:

vrz l
T,=T,+ B ol iy 5| _1)c
4k r t

= —_—
{2 7r L)

T,°C (define inner surface temperature T}

a

{(temperature of inner surface)

(define T,, temperature of outer surface)

(temperature of outer surface.)

Exampile 5.15. A nuclear fuel element is in the form of a hollow
cylinder insulated at the inner surface. Its inner and outer radi
are 5 cm and 10 cm, respectively. The outer surface gives heat
to a fluid at 50°C where the unit surface conductance is 100 W/
(m’K). k of the material is 50 W/(mK). Find the rate of heat
generation so that maximum temperature in the system will not
exceed 200°C.

Solution. See Fig. Example 5.15.

Data:
ri=005m  r,:=01m k:=50W/mK
T, :=50°C k=100 W/(m’K)
fL=1m T; = 200°C

To find rate of heat generation, g,:
This is the case of a hollow cylinder with heat generation,

T, = 57.988°C
Exercise: Solve this problem, from fundamentals, ie. starting from Eq. 5.18.
k = 50 W/(mK)
%=7
fr, = 100 WH{m?2K)
T, =50°C
Insulated
[=005m
r,=00tm

FIGURE Exornple 5.15 Hollow cylinder with heat
generation, losing heat on outer surface by convec-
tion, inner surface insulated

insulated on the inside, losing heat on the outer surface to a
fluid flowing at temperature T,, with heat transfer coefficient
h,. Therefore, Eq. 5.29 is applicable:
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e g [N (Y ()
Tiry=T,+ 2 h + K ? —Z-IH(TJ— r— . ....(5.29)

Here, T, is known to be 200°C, since maximum temperature occurs on insulated inner surface, at r = 0.05 m. So, in
Eq. 5.29 replace r by r; and T{r) by T;; then, the only unknown, 4, can be calculated:

At =1? - : At
ie. T,=T,+ M*.%_‘. Ll omlf|o|®
2:-h,1, 4.k r, r, ¥

i i

-5

Therefore, q, = - (define q,)
(r2 B r?) 2 2 3
o T T T r,
+—— =] -2'In| % |-1
2-h,r, 4k |:(r,] (:‘,J }
g, = 3.79582 x 10° W/m* = 379.582 kW/m® (heat generation ratefunit volume.)

Exercise: Solve this problem, from fundamentals, i.e. starting from Eq. 5.18.

5.4 Sphere with Uniform intermmal Heat Generation

Spherical geometry is popular for many applications, such as reactors for chemical processes, storage of radio-
active wastes, experimental nuclear fuel elements, etc. We shall consider heat transfer in a solid sphere with
different types of boundary conditions.

5.4.1 Solid Sphere with Internal Heat Generation

Consider a solid sphere of radius, R. There is uniform heat generation within its volume at a rate of 4, (W/ m?).
Let the thermal conductivity, k be constant. See Fig. 5.12.

We would like to analyse this system for temperature distribution and maximum temperature attained.

K, a4 Temperature profile,
Q To parabolic
TW
Solid sphere
FIGURE 5.12(a) Spherical system with heat FIGURE 5.12(b)} Variation of temperature along
generation the radius

Assumptions:
(i) Steady state conduction
(i) One-dimensional conduction, in the r direction only
(iii) Homogeneous, isotropic material with constant k
{iv) Uniform internal heat generation rate, g, Ww/md.
With the above stipulations, the general differential equation in spherical coordinates (see Eq. 3.21) reduces
to Eq. 3.24, i.e.
2
ﬂ+£.£+ﬁ. = N .,.(a)
dr® r dr k

We have to solve Eq. a to get the temperature profile; then, by applying Fourier’s law, we can get the heat
flux at any peint.
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) &°T ar e’

Multiplying Eq. a by r* . +2.0. 5 =0
plying Eq. abyr r 0 r I P
2
. d 2 dT _ - qg'r
e dr (T dr ] - k
T gt
Int ting: 22— 4
cEranng “ar T3k
. dT _‘?g'r C]
o = it § -{b
e dr 3-k r )
Integrating again: T(r) = —Z‘-k»-- ——1—+C2 -.(5.37)
. r

Eq. 5.37 is the general relation for temperature distribution along the radius, for a spherical system, with
uniform heat generation. C; and C,, the constants of integration are obtained by applying the boundary
conditions.

In the present case, B.C.'s are:

B.C. (i): at r =0, dT/dr = 0, i.e. at the centre of the sphere, temperature is finite and maximum (ie. T, = T,,)
because of symmetry (heat flows from inside to outside radially, in all directions).

B.C. (ii): at r = R, i.e. at the surface, T=T,

From B.C. (i) and Eq. b, we get: C; = 0

From B.C. (ii} and Eq. 5.37, we get:

—g.-R
Tm - ‘}68}( + CZ
.R2
ie. C,=T,+
6-k
Substituting C, and C, in Eq. 5.37:
_ ‘?'2 R2
Try=—2" 7 %
6-k 6-k

. G (p2_ 2
ie. T(0) =Ty + 25 (R =1 (5.38)

Eq. 5.38 is the relation for temperature distribution for a solid sphere, in terms of the surface temperature,
T.,- Note that this is a parabolic temperature profile, as shown in Fig. 5.12(b}.
Maximum temperature:
Maximum temperature occurs at the centre, because of symmetry considerations (i.e. heat flows from the centre
radially outward in all directions; therefore, temperature at the centre must be the maximum).

Therefore, putting r = 0 in Eq. 5.38:

2
gs R
Trax = T + .(5.39
max w 6k ( )
From Egs. 5.38 and 5.39,
2

TM-Tw _,_ (L) ..(5.40)

Tmax = T R
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Eq. 5.40 is the non-dimensional temperature distribution for the solid sphere with heat generation.
Heat flow at the surface: :
Of course, in steady state, heat transfer rate at the surface must be equal to the heat generation rate in the sphere,

4 :
Q, = (g)mﬁqg )
Heat transfer by conduction at the outer surface of sphere is given by Fourier’s law:

ie. Qp =—kAWT/dr) 1y, _ g
i o[~ R ;
ie. Q. =- k4.7 R* By {using Eq. 5.38 for T(r))
. 4 3
ie. Q= g-ﬂ'-R g ..(5.41)

Eq. 5.41 and Eq. ¢ are the same, as expected.
Convection boundary condition:
When heat is carried away at the outer surface by a fluid at a temperature T, flowing on the surface with a
convective heat transfer coefficient, #,. (e.g. hot spherical ball cooled by ambient air), then, mostly, it is the fluid
temperature that is known and not the surface temperature, T,, of the sphere. In such cases, we relate the wall
temperature and fluid temperature by an energy balance at the surface, i.e. heat generated and conducted from
within the body to the surface is equal to the heat convected away by the fluid at the surface.

4
ie. E-E-Ra-qg = b, (47 R)AT, - T,)
. ge R
£ To=T,+ 2— ~{d
ie =Tt 3 (d)
Substituting in Eq. 5.38:
dgR G 2
T(r) =T, + + = (R -1 o (5.42
O =Tor 3+ g ® =) (5.42)
Again, for maximum temperature put 7 = 0 in Eq. 5.42:
2
ge-R g ‘R
T =T + L ..{5.43
max Q 3'hu 6‘k . ( )
Eq. 543 gives the centre temperature of the sphere with heat generation, in terms of the fluid temperature,
when the heat generated is carried away at the surface by a fluid. . kag 1
w
5.4.2 Alternative Analysis dr

In the alternative method, which is simpler, instead of starting with
the general differential equation, we derive the above equations from
physical considerations. See Fig. 5.13.

Let us write an energy balance with an understanding that at any

radius r, the amount of heat generated in the volume within r = (¢ and
r = r, must move outward by conduction.
4 3 2, dT
—nrg=-k@rry— (a
37T ( ) I (a)
ie AT = _Bqlf -r-dr )
) R .
Integrating: dT = " rdr
ntegratng: Y FIGURE 5.13 Solid sphere with

heat generation
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_ '
ngr +C ..(b)

ie. T(r) =

Eq. b gives the temperature distribution along the radius.
Get the constant of integration, C from the BC.:at r=R, T = Ty

Then, from Eq. b:
2
. g5 R
£ C=T,+—=——
ie vt Tk
Substituting back in Eq. b:
2 2
— g7 qu
T{r)=—% T
" ok " ek
ie. T(r) =T, + q—g-(Rz - %) ()
“ 6k

Eq. c gives the temperature distribution along the radius, in terms of the surface temperature of the cylinder.

Note that Eq. ¢ is the same as Eq. 5.38 derived earlier.

In many cases, temperature drop between the centre of the sphere (where maximum temperature occurs)
and the surface is important. Then, from Eq. ¢, putting r = 0:

2
‘?g ‘R
T = Ty + -(d
Eq. d is the same as Eq. 5.39.
And, from Egs. ¢ and d, we can write:
2
_T(r_)_Iw_ =1-— (LJ (e
Tnax — T R

Eq. e is the same as Eq. 5.40, and gives the non-dimensional temperature distribution in the sphere with heat
generation, If heat generated in the sphere is carried away by convection, by a fluid flowing on the surface of the
sphere, the wall temperature and fluid temperature are related by an energy balance at the surface, as done
earlier.

5.4.3 Analysis with Variable Thermal Conductivity
In the above analysis, thermal conductivity of the material was assumed to be constant. Now, let us make an
analysis when the thermal conductivity varies linearly with temperature as:
k(T) = k,(1 + AT),
where, k, and # are constants.
Again, considering Fig. 5.13, we have from heat balance (see Eq. a above):

%.,;. r3. 4 =-k(T) @ r%)- %1: -.{a)

ie, k(T)-dT = r-dr

— 4
3
Substituting for k(T) and integrating:

J-k,_.,-(l + B-TVAT = _—:-&J.rdr

ie. T+ =% ,cC D)
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C is determined from the BC.:atr=0,T=T,

We get:
2
C=T,+ HQ-
) 2
Substituting C in Eq. f:
2 2
BT’ 9" A1
T -T,-—%=0
o thE 6k, T 2 (g}
Eq. g is a quadratic in T. Its positive root is given by:
2 2
-1+ 1_4.£.M__Ta_ﬂ'T0
2] 6k, 2
Tn=
2. B
. -1 1 ., 2T) a7
1e. T(r) = — + [_+T +__°J_ g
B \/ gt B 3pk,
1 (1Y &
T() = — —+T, | -=% {544
ie 0=+ [ﬂ ] W (5.44)

Eq. 5.44 gives temperature distribution in a solid sphere with internal heat generation and linearly varying k.
Compare this equation with that obtained for a slab, with temperature at either side being the same, i.e. Eq. 5.10
and that for a solid cylinder, ie. Eq. 5.25.

Eq. 5.44 gives T(r) in terms of T, (i.e. T, at r = 0}

If we need T(#) in terms of T, then in Eq. f, use the BC:atr =R, T=T,

Then we get:

T2 g R?
C=T,+ ity + S
2 6k,
Substitute this in Eq. f and get a quadratic in T.
Solving, we get, for temperature distribution:

B 2 (R2 12
T{r) = =1 + (—1-+ Tw] + ﬂg(___l ..{5.45)
B ﬂ 3-8 ko
Example 5.16. A solid sphere of radius, R = 10 mm and & = 18 W/(mC) k = 18 WImC), g, = 2 x 10° Wim®

has a uniform heat generation rate of 2 x 10° W/m®. Heat is conducted T
away at its outer surface to ambient air at 20°C by convection, with a Q
heat transfer coefficient of 2000 W /{m*C).
{i) Deternine the steady state temperature at the centre and outer T =20°C
K.

surface of the sphere.
(i) Draw the temperature profile along the radius.
Solution. See Figure Example 5.16.
Data:
R:=001m h, == 2000 W/{m?K) k =18 W/mK} T
T,=20°C g :=2x10°W/m® v
To calculate T, and T,
From Eq. 5.39, we have

h, = 2000 W(m?.K)

FIGURE Example 5.16 Solid sphere
with heat generation

.R?%
T =T +L

max Ll 6' k

.{5.39)
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And, from heat balance on the surface of the sphere,

%-J’r-R3-qg =h, &7 RY- (T, - T)

. g, R
e T, =T, +
ie w 3
ie. T, = 23. 333°C (surface temperature of sphere.)
q.-R g, R?
Therefore, Toax =T, + ; Py + -ET
ie. Toax = 25.185°C (centre temperature of sphere.)

To sketch the temperature profile:
Temperature distribution is given by Eq. 542, i.e.

qg'R + Qs

3-h, 6k
To sketch the temperature profile in the sphere, define a range variable r, varying from 0 to 0.01 m, with an
increment of 0.0005 m. Then, choose x—y graph from the graph palette, and fill up the place holders on the x-axis
and y-axis with 7 and T(r), respectively. Click anywhere outside the graph region, and immediately the graph
appears: See Fig. Ex. 5.16(b}

T(r) =T, + (R?- rz) (5.42)

r:= 0, 0.0005, ..., 0.01 (define a range variable r..starting value = 0,
next value = 0.0005 m and last value = 0.01 m)

T{r) for solid sphere with heat generation

26 rin metres and

T(r)in deg.C
255

25 ~
™~
(0 ™

24.5

24

235 \\

23
04 .QQ\Q .00?'0 .0030 DOLQ .0050 o 0 ot Q DOBQ oo oot
r

FIGURE Exaomple 5.16(b}

It may be verified from the graph that temperature of the centre and outside surface of the sphere are 25.19°C and
23.33°C, respectively.
Example 5.17. In a sphere of radius R, heat generation rate varies with the radius as: 9y = G0 [1-(r/ R)"]. If the thermal
conductivity k, is constant, derive an expression for the variation of temperature with radius.
Solution. This is a case of solid sphere with variable rate of heat generation.

See Figure Example 5.17.

The method is, as usual, to start with the governing equation for the assumtions of the problem, namely, one-
dimensional, steady state conduction with heat generation, with constant &, in spherical coordinates:

2

ie. iI.. + E .d_g‘_ + q_g

=0
drt r dr  k (&)
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Kk Gg=9oi1 — (7RI}
Q

Solid sphere

FIGURE Example 5.17{0) Solid sphere with variabie
heat generation

Temperature profiie,
T, parabolic

T

w

FIGURE Example 5.17(b} Variation of temperature
along the radius

2

o d'T AT gt
Multiplying Eq. a by r%: 73 =% + 2.7 — + —— =0
plying Eq. a by 7 dr2+ rdr+ .
ie. i rz.ﬁ +ﬁg_1_ -0
ar dr Kk
r 2
]
- df,dr). " [ R
Substituting for g — i7" —— [+ —————"— = 0
dr dr k
T g, 7 go 7
Integrating: 2 80 Bt et
riegrane Tar T sk T skR
. T ot ‘To'rs G
e, —_— - = — o
- ar T3k SkR 7 ®)
2 1
. . -7 Go-T (4
Integrati : T(r)=—"7- -1 +C
egrating again (ry Py + R T 5 ()
Eq. ¢ gives the temperature distribution. Obtain C, and C, by applying the BC.'s:
B.C. (i): at r = 0, dT/dr = 0, since temperature is maximum at the centre due to symmetry.
BC (ipatr=R T=T,
From B.C. (i) and Eq. b, we get C; = 0
From B.C. (ii} and Eq. ¢
2 2
9 R Jo ‘R
Co=T,+ - -
27T ek 20k
Substituting for C; and C, in Eq. «
. 2 . 4 . 2 . 2
T =T, - &7 Gl R Gk R
6k 20-kR 6-k 20-k
ie. T =Ty + 2 (R2- ) - =T o (RY -1 AD
Y ek 20-k-R?
Eq. d gives the desired temperature distribution in the sphere.
When r =0, T = T, = Ty, Then, from Eq. d:
e 2 %'RZ 7 %'Rz
T _T = P (R} - =
T = ek B Tk ©
Eq. e gives the maximum temperature difference in the sphere with heat generation varying with position as:
Gy = 4o 11 - (r/R)z]
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Exomple 5.18. In Example 517, if g4, = 10°W/m®, R = 0.4 m, k = 12 W/{mC), and if the centre temperature is 200°C,
determine the surface temperature. Also, find the heat flow rate at the surface. Draw the temperature profile.
Solution.
Data:
.2

R:i=004m g := qu-[l—(iJ ] g = W00 W/m?  k:=12W/mC) T, :=200°C
To find the surface temperature:
Apply the Eq. d developed in the previous Example:

. o q
ie. T =T, + ??I'(Rz - o R - Ad)
Temperature is maximum when r = 0:
. qa qﬂ
Le. ToﬁTw+ ;E-RZ—EO.—IC’RZ
L) 2 4o 2
Therefore, T,=T,- -2 R+ LR
erefore w 0T ok 0.k

ie. T, = 184.444°C (temperature in the surface of sphere)

Heat flow rate at the surface, Q:
Apply Fourier’s law at the surface, since, now, we have equation for temperature distribution:

ie. Q=- k4752410
dr

r=R
Now, we have:
4. 2 2 qo 44
=T, += AR ~r ) -—L _(R* -
R [‘” ok B ) g R )}

In Mathcad, we do not have to actually differentiate and expand the expression.
But, define 1"(r) = dT(r}/dr and find out T'(r} at r = R:

T(r} = Ed—T(r) (define the first derivative of T(r} w.r.t. T)
r
Therefore, T{R) = - 444 444 (value of T'(r) at r = R = 0.04 m)
Therefore, Q= -k4 2-RETR), W (define heat transfer rate at the surface)
ie. Q=107233 W (heat transfer rate at the surface.)

To sketch the temperature profile in the sphere, define a range variable r, varying from 0 to 0.04 m, with an increment
of 0.001 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with r
and T{(r), respectively. Click anywhere outside the graph region, and immediately the graph appears.
r:=0,0.001, .., 0.04 (define a range variable r..starting value = 0,
next value = 0,001 m and last value = 0.04 m)
It may be verified from the graph that temperature at the centre and on the outside surface of the sphere are 200°C
and 184.44°C, respectively.

5.5 Applications

In this chapter, so far, we studied the steady state, one-dimensional heat transfer, with internal heat generationsn
simple geometries such as slabs, cylinders and spheres. Now, we shall analyse some practical exampies based on
these geometries. :

5.5.1 Dielectric Heating

Dielectric heating is a very popular, industrial method of heating adopted to heat insulating materials such as
wool, rubber, plastics and textiles. Here, a high frequency, high voltage alternating current is applied to the plates
of a condenser; the insulating material to be heated is placed between the plates. Heat is generated within the
volume at an uniform rate.
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¢ Wool (Insulation material)

T, T,
Electrode-1 9 * %  Etectrode-2
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— ¥

FIGURE 5.14 Dieletric heating

Refer to Fig. 5.14. The insulation material of thickness L is placed between the two electrodes 1 and 2 and
high frequency, high voltage, alternating current is applied. Plates 1 and 2 will also get heated up while the
insulation material is uniformly heated up at a rate of g, (W/ m°). Both the plates lose heat to the ambient air at
temperature T,, with heat transfer coefficients of 2, and ?12, respectively. Let the plate temperatures be T, and T,
as shown. ‘

It is clear that this situation is similar to a plane wall with uniform heat generation and we shall use th
general differential equation for conduction in Cartesian coordinates, with the following assumptions:
Assumptions:

(i) Steady state conduction

(i) One-dimensional conduction, in the x direction only
(iii} Homogeneous, isotropic material with constant k
(iv) Uniform internal heat generation rate, g, {W/m’).

Consider any section within the volume at a distance x from the origin. Let the temperature at this section
be T.

Now, with the above assumptions, the controlling differential equation is:
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2
a‘T+q_g

) =0 .fa
IR (a)
Let us define excess temperature, # = T - T,, where T, is constant ambient temperature.
Then, g, =T,~T, and
8,=T,-T,
Also,
dg dT
— = —, and
ax  dx
fo_an
dx*  dx?
Then, Eq. a may be written as:
420 4
_— = = O b
PR (b)
. deg g%
Integrating, — 4+ =C
gralng, dx K 1
. . Gg X :
Integrating again, 8+ "k =Cyx+ G, .(c)

Eq. ¢ gives the temperature distribution in the medium.

Integration constants, C; and C, are obtained from the B.C’s.

B.C.(i}: at x = 0, heat conducted must be equal to the heat removed by convection from Plate 1 to the
ambient.

ie. + kA [g—g]
dx

(Note that positive sign is used on the LHS of Fourier’s equation above, since the heat flow on the left plate is
from right to left, i.e. in the negative x-direction).

=AM -T,) = A8,

x=0

ie. k-A-Ci=h-A 8 ..since L =C
dx
x=0
. -6
or, . Ci=— {d
T 1 A {d)
B.C.(ii) atx =0, f=40,

Therefere, from Eq. <
C, =6 .{e)
Substituting C; and C, in Eq. ¢

p— - 2
2-k k

Eq. 5.46 gives the temperature distribution in the medium, in terms of 8,.
&, for the plate on the right is obtained by putting x = L and ¢ = 8, in Eq. 5.46.

B(x) = +6 ..(5.46)

2
- 4L 6L

€. &= —2— =4 4 f
e g ok e T4 (f}

FUNDAMENTALS OF HEAT AND MASS TRANSFER



It is obvious that in steady state, total heat generated within the medium must be equal to the sum of heat
convected away at the left and right plates:

ie. qoL-A=h-A-6 +hyA 8,
or, gL =h-6 +h 6, .{g}
Electrode temperatures T; and T, are obtained by sclving Egs. f and g simultaneously.

5.5.2 Heat Transfer through a Piston Crown
Cylinder and piston arrangement is shown in Fig. 5.15.

Piston crown is subjected to a uniform heat flux due to convection and radiation from the hot gases and
cylinder walls. Let this heat flux be g, (W/m 2). Let the outside radius of the piston crown be R and its thickness,
b. Let T, be the temperature of outer surface of the crown, and k, the thermal conductivity of the crown material.

Piston crown  Cylinder dr

T, \

Heat flux, g, (W/m?)

N
]
—

A

FIGURE 5.15 Heat transfer through piston crown

To derive the differential equation governing the temperature distribution in the crown, let us follow the
usual procedure of writing an energy balance on an infinetisimal control volume:

Consider an elemental volume at radius r and of width dr as shown.

Heat conducted into the element at radius, r:

Q, =—k~(2-:r-r-b)-~‘3!1
dr

(Remember that area in Fourier’s equation is the area normal to the direction of heat flow = (2xzrh)).
Heat given by gases to the element:
=g, 2 7 r-dr)
Heat conducted out of the element at radius (r +dr)=Ql, 0=

Q+ (Qr) dr

Then, in steady state, writing an energy balance:

Qr+Qg=Q'r+dr

—0+ [er)

Therefore, Q; = i‘(Qr)‘df
dr
. d dT
Le. gg 2 mrdr= E{—k-Z-ﬂ'vr-b-dr]-dr
d( dry g |
.. ' . e -7 = 0 .-
. ar [r dr} kb (a)

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITH HEAT GENERATION




.?’ . . .
ar % G ()

Integrating, =
cgrating ar 2kb 7
g1
Integrating again, T(r) + :k ; =C-In(n + G ..(c)

Eq. ¢ gives the temperature distribution along the radius for the piston crown. C; and C,; are determined
from the B.C.’s:

BC.(i);atr =0, E
dr

centre to periphery radially).
BC.Gi):atr=R, T=T,
From B.C.(i) and Eq. b: C, = 0
From B.C.(ii} and Eq. c:

= 0 since temperature is a maximum at the centre by symmetry (i.e. heat flows from

2
g, 'R
Tt yxy =G
Substituting C; and C, in Eq. ¢
2 2
qg.r qu
T =T
O+ kb " kb
ie. Ty =T, + i/ (RP-rY ..(B.47)
4-k-b

Eq. 547 gives the temperature distribution along the radius for the piston crown.
Note that the temperature distribution is parabolic.

Maximum temperature:

Maximum temperature occurs at the centre, i.e. at 7 = 0.
Putting ¢ = 0 in Eq. 5.47, we get:

2
4 R
Tnax = To + _48-k-b (5.48)
If  is the total heat given by gases to the piston crown, then,
Q= ﬁ.Rz-qg
. Q
ie. =
%= "R2
Therefore Thax =Tg + Q - R? {5.49)
. max = To+ — 7 T {5
And, thickness of piston crown:
L ...{5.50)

b= —>c=
4'j""""c'(Trmlx -T)
Eq. 5.50 is important, since it gives the thickness required for the piston crown in terms of Q, Tinaxand T,.

5.5.3 Heat Transfer in Nuclear Fuel Rod (without cladding)

In a nuclear fuel rod, heat is generated by slowing down of neutrons in a fissionable material; however, this heat
generated is not uniform throughout the material, but, varies with position according to the following relation:

% =4, -[1 - (%ﬂ (a)
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where, - g, = heat generation rate per unit volume at the : ke =gl = (AR
centre (i.e. at ¥ = 0), and
R = outer radius of the solid fuel rod.
We would like to get an expression for the temperature
distribution in the fuel rod, maximum temperature in the
rod and, of course, the total heat transferred. See Fig. 5.16.

ha
Assumptions: T
(i) Steady state conduction e
(ii) Ome-dimensional conduction, in the r direction only
(iii) Homogeneous, isotropic material with constant k
(iv) Interna% heat ger;eration at a varying rate: g, = 4,.{1
- (r/R)%), (W/m).
For these assumptions, the controlling differential R L
equation in cylindrical coordinates becomes:
2T 14T 4 FIGURE B5.16 Cylindr_icul fuel.rod v_vith hef{t
—+——+-= =0 (b} generdtion varying with position
dr? rdr &k ‘
T 4T 45
Multiplying by rir-—5 + — + =— =0
PYRERY R4 T ar Tk
ie. ué.. T'ﬂ + i’g.....t ={
dr| dr k
_ d rdT L BTy (rJz 0
ie. —r— 1= = =
dr\ dr k R
. T g, (7* rt
Integrating: —+ 2 — - =C ()
cgranng Tar Tk [2 arZ)
e ar g fr_ 7 1. G
dr k2 4R? r
g (7 !
Integrating again, T(r) + 22| — - ——| =C-In(n) + C (d)
ntegrating again, T{(r) |7 168 1-In(n) y

Eq. d gives temperature profile within the fuel rod. C; and C, are obtained from the B.C.’s:
B.C(iyatr=20, %Z = 0 since temperature is a maximum at the centre of the rod.
r
B.C.(ii) Also,atr =0, T =T,
Then, from Eq. ¢, C; = 0

And, from Eq. d: C; = Ty,
Substituting C; and C, in Eq. d:

2 4
g | T 4
Ti do 2 _ =T
0+ (4 16.R2J mex

2 4
: _QO r r -y
L. T(r) T = ——| —— ..(5.51
ie 1) = T = [4 16_R2] (5:51)

Eq. 5.51 gives the temperature distribution in terms of the centre temperature of the fuel rod.

ONE-DIMENSIONAL STEADY STATE HEAT CONDUCTION WITH HEAT GENERATION




Surface temperature T, :
Surface temperature of the rod is obtained by replacing r by R and T(r) by T, in Eq. 5.51:

2 4
ie. Tou-T, = e[ B_ R
k{4 16R
. P2
ie. T, -T, =29 R .(5.52)
16k

Eq. 5.52 is an important relation, since it gives the maximum temperature drop in the fuel rod. It is necessary
to know this quantity to ensure that sufficient cooling is provided, so that the fuel rod does not get overheated or
melt down.

Heat flow from the surface:
Knowing the temperature distribution, heat flow rate at any point is obtained by applying the Fourier's law:

At the surface, i.e. atr = R:

dT Y
-
r=R
. cea|R[R_K
ie. QO=kA {k [2 4‘R2J:|
ie. o= AR {5.53)

Convection boundary conditions:
If the heat generated is carried away at the surface by a fluid at temperature T,, flowing with a convective heat
transfer coefficient of h,, we write the energy balance in steady state, i.e.

- Heat generated in the rod = Heat carried away by convection at the surface.

4o-A-R

ie. T AT, - T)
ie. T, =1,+ %R
4k,

Substituting this value of T,, in Eq. 5.52, we get:

. 4 P
Tmax_ Ta = —q'O_R_ + ?_ﬂo R
4 16k

. gR{1 3R

ie. Toax— T 4 (k + 4-k] ..(5.54)
Eq. 5.54 gives the maximuin temperature (i.e. at the centre) in the fuel rod, in terms of the fluid temperature.

Exemple 5.19. A cylindrical fuel rod is of 20 cm diameter and has k = 40 W/(mK). Surface temperature of the rod is

75°C. Heat generation rate in the rod is given by:

g = k1 - (r/ R)*, where g,=525x% 10 W/m?. Determine the temperature at the centre of the rod, and the heat transfer

rate per metre length of rod. Also, draw the temperature profile.

Soution. See Figure Example 5.19.

Data:

a

2
R:=01m T,:=75C k=40 W/(mK) g = qu-[l(%) ] W/m?

§,=525x 10°W/m® L:=1m
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k= 40 W/(mK) G = 5.25 x 108 {1 — (WR%)} Temperature at the centre of rod:

We use Eq. 5.52:

3.q, R?
ie. Tax = Tw= ——— ..(5.52
e T ™ 16-k (5-52)
. 3-4.-R*
Le. Tiax = T + 1q6-k
Le. T rax = 321.094°C (temperature at the centre of the rod.)

Heat transfer rate per metre length of rod:
We use Eq. 5.53:

Le. o= AR ..(5.53)
4
R=01m Therefore, = M W/m (define ()
FIGURE Example 5.19 Cylindrical fuel rod ie. Q = 824668 x 10* W ... = 82.4668 KW/m
with heat generation varying with position (heat transfer rate/m.)
To draw temperature profile:
We use Eq. 5.51:
2 4
i -, | r
e T — Toax = o —— ..(5.51
ie (1)~ Trnax p [ 4 16'R2J (5.51)
2 4
i o | 7 r
L. T = Tpax— —| —— ..define T(r).
ie r) max = [ 1 16~R2] ofine T(r)

To sketch the temperature profile in the cylinder, define a range variable r, varying from 0 to 0.1 m, with an increment
of 0.005 m. Then, choose x~y graph from the graph palette, and fill up the place holders on the x-axis and y-axis with r
and T(r), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig. Ex. 5.19(b).
r:=0, 0.005, .., 0.1 (define a range variable r..starting value = 0,

next value = 0.005 mt and last value = 0.1 m)

Temp. distribution in a nuclear fuel rod.

350
T rin metres and

300 \ T(r) in deg.C
250 \
) 200 \

150 5

100 : \
N

50

0 0.02 0.04 0.06 0.08 0.1
r

FIGURE Exomple 5.19(b)
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Cladding, k, Fuel rod, k, g Note from the graph that temperature at the centre and
¢ surface are 321.1°C and 75°C, respectively.

5.5.4 Heat Transfer in Nuclear Fuel Rod
with Cladding

Generally, fuel rod for use in a nuclear reactor is lagged’
with a tight fitting cladding material, to prevent
oxidation of the surface of the fuel rod by direct contact
with the coolant. Usually, aluminium is used as the
cladding material. We would like to analyse the
temperature distribution and heat transfer in the
combined system of (fuel rod + cladding). Remember
that heat generation occurs only in the fissile material of
}ﬁnperature profile the fuel rod and, in the cladding there is no heat genera-
tion.

In steady state, heat generated in the fuel rod is
conducted through the cladding and then, dissipated to
the coolant flowing around the cladding by convection.
It is assumed that there is no contact resistance between

> the fuel rod and the cladding, i.e. there is continuity of

FIGURE 5.17 Cylindrical fuel rod with cladding ;‘f’atsﬂl‘;" and temperature profile at the interface. See
: ig. 5.17.
" Let Ry = outer radius of fissionable fuel rod

k; = thermal conductivity of fuel rod
R, = outer radius of cladding material
k. = thermal conductivity of cladding
material.
Let heat generation rate in the fuel rod vary with position according to the following relation:

w3

where, g, = heat generation rate per unit volume at the centre (i.e. at r = (), and
R = outer radius of the solid fuel rod.
Assumptions:
(i) Steady state conduction
(ii} One-dimensional conduction, in the r direction conly
(iii} Homogeneous, isotropic material with constant k
{iv) Internal heat generation at a varying rate: g = goA1-(r/R¥ }, (W/m?).
For these assumptions, the controlling differential equation in cylindrical coordinates becomes:

AT 14T 45
E,.T+? dr +—k— = (a)

2 T
BT AT g

Multiplying by - — =
ultiplying by r r 2 t .
. d dT gt
" | s 2y
e ar [' er "k ®)
ar  -gq ., :
Now, PR (from Fourier’s law, where q is the heat flux)
r
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Therefore, i(—~r-q)+q_§c'_r_ =0

dri k
d . .
or, d—(f"?) =qyr ({c) since k is a constant.)
T
Let us denote fuel rod and cladding materials by subscripts f and c, respectively.
Then,
for fuel rod:
d
E(r-qf) =g
4 2
. r
ie. —(rgp =g, t1-|—| { ~Ad
ar = {Rf] " @
for cladding:
di(r-qc) =0 ((e)...since there is no heat generation in cladding)
’
4 1’2 r4
Integrating Eq. rgi=g| ————|+C
grating £q =95 . R} 1
3 C
: ¥ r 1
ie. =g, | = - +—
T [2 4-R}] r ®
Integrating Eq. e r-g,=GC,
_— C
ie. q. = TZ ~(g)

Now, apply the B.C.’s:

B.C. (i): q¢= finite, at r = 0

BC.(ii): g5 = g, at r = Ry, i.e. at the interface
Then, from Eq. f and B.C.()) C; = 0

And, from Egs. f and g, and B.C.(ii):

C Ry R}
Lo zquqo.[ f__f]

5 2
Rf 2 4-Rf
‘R
ie. C _ 5ty
Rf 4
.R2
i.e. Cz = ﬂj_f
4

Therefore, heat flux through the fuel rod and cladding may be written as:

k —de r r (h)...from Eg. )
= - - ={.- -~ Hi] 3
% T dr o 2 4-Rf- (t)..from Eq
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.R%
- and, qczﬁkc.ﬂz%_f
" dr 4-r

Next, temperatures T, and T, in fuel rod and cladding are obtained by integrating Egs. h and i, respectively:

((i)...putting value of C, in Eg. g)

4 2
9o r r .
T,=212. -—i1+C )]
! 3 3
kf {16-Rf 4 )
_g.-R?
and, T. = Zok / In{r} + C, ..{k)

(5
Get C; and C, by applying the B.C."s:
B.C.(iii): T, = T,, at r = R_..Le. at outer surface of cladding
BC(ivk T, = Tf, atr= Rf, ie, at the interface
Then, from Eq. k and B.C. (iii):

.R?
Co=Ty+ 20 1Ry
'kc
Immediately substituting C, in Eq. k, we get:
2 2
-0 Ry 9 Ry
T. = -In{r) + | T, + —-In
0 [ i MR
.R2
ie. T.=T, + 5 (&) (5.55)
4-k, 4
.R? '
and, T.o1, =Y .m(&) .(5.56)
4-k, r .
Eq. 5.55 gives the temperature distribution in the cladding.
Eq. 5.56 gives the temperature drop across the cladding.
And, from Eq. j and B.C.(iv):
2
=q_"-’. _Rf _R_f]+C3=
2 €
ke | 16-R; 4
2
4o Rf
Tr=Cy- = 1
Le f 3 16kf c ( )
Then, from Eq. 5.55, and Eq. k:
Bk L wR ln{Rc]
3 w o
16-k, 4-k, Ry
R
ie C;=T, o S| 2 i lim| R
4 4.k ke R¢
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Substituting Cy in Eq. j:

4 2
. o r r .
ie. Tr=2| ——-—14+C (i)
f 2 3 J
kg [lﬁ-Rf 4]
we get:
4 2 .R2
T;= .‘1"_[ r - _L] + T, + kLI i+ l]_n[_R_CJ (5.57)
‘ kf 16-R7 4 4 4-kp ke R¢

Eq. 5.57 gives the temperature distribution in the fuel rod.
Maximum temperature in the fuel rod:
This occurs at the centre of the rod.

Putting r = 0 in Eq. 5.57, we get:

T,

max

2
qD‘Rf [ 3 ; [R D
=T, + 12 4 nl|2c ...{5.58)
4 4-kf k. Rf

i.e. Bq. 5.58 gives the maximum temperature in the fuel rod.

5.6 Summary of Basic Conduction Relations, with Heat Generation

In this chapter, we have analysed steady state, one-dimensional heat transfer, with internal heat generation, in
three important geometries, namely, plane slab, cylinder and sphere and derived relations for temperature
distribution, maximum temperature difference and rate of heat transfer. We also studied the effect of variable
thermal conductivity on some of these results. Since all these relations are practically important, they are
tabulated in Table 5.1 to Table 5.7, for easy reference. '

TABLE 5.1 Relations for steady state, one-dimensionol conduction with internal heat generation, and
constant k

Governing PTG,

2 2
differentiat i LA g B,
equation dx k dx k

Temperature _ 9 2 _ w9 (-T) _ 5 0
distribution T =Tyr i =) | T =T [(L Nk I T = Ty 5o (=)

Heat transfer
rate at the Q=g AL | Qer=-kA

daT(x)
surface, Q, (W) X

atx=0 gy AL

dT(x
Qﬁgm=—k-A-——d~(;—) at=x=1L

. 7 g, L? Equate dT(x)/dx to zero; substitute q, L

max = T (C) 2.k resulting x in T(x) to get T, 2.k

Comments L is half-thickness L is the thickness of slab L is the thickness of siab;
of slab; Maximum maximum lemperature
temperature occurs occurs on the insulated
on the centre line surface
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TABLE 5.2 Relations for steady state, one-dimensional conduction with internal haat generation and k
varying linearly with temperature as:
K(T) = k(1 + AT)
Kp = k(1 + BT,) To=(T, + T2

Retation o Plgne wall of thickness, L (sides at T, and T,)
d dar
i iff tial i — — =
Governing differential equation ix (k(T) dx) +q,=0
2
A -1 1 2-x qy-X
Temperature distribution TX) = — + ('—+ TJ (N -+ BT )+ L (L —x)
B Jﬁ' ALt ? Bk,
Heat transfer rate at the surface, Q, (W) Qun =— kA a1ix) atx=0
dT(x)
Qrigm =-kA. Tdx atx=1L
Tnax » (C) Equate dT{x)/dx to zero; Subst. resulting x in T to get Tinax

TABLE 5.3 - Relations for steady state, one-dimensional conduction with internal heat generation, and constant k

B Solic cyﬂnder ’ '. .
Governing differential equation ‘j_z + %% + q_; =0 Z—Q; + ;%F + q—k" =0
istributi q Al T, Y

Temperature distribution TN =T,+ ﬁ-(Ra - TA=T,+ i_k Hﬂ -2in [TDJ - [EJ J
:f&tl:rsaun:::rerg‘?vm 9y 7 A5 L G (-7} L

q, A a, 2 () ?
Tonax ~ T (C) :'k "g‘.k_' (TT} k2-ln[7':J—1

i

Comments L is length of cylinder; \L is length of cylinder;

maximum temperature occurs | maxirmum temperature occurs

at the centre on the inside surface

5.7 Summary
In this chapter, we studied one-dimensional, steady state heat transfer through simple geometries of a plane slab,
cylinder (both solid and hollow) and sphere, with internal heat generation. Whether the heat generation rate is
uniform or varying with position, the solution technique is, always, to start with the appropriate general
differential equation and solve it by applying the boundary conditions. Once the temperature distribution is
known, rate of heat transfer at any location is easily calculated by applying Fourier’s law.
Problems of heat transfer when the thermal conductivity varies with temperature were also studied.
Applications of these techniques to some practical cases with internal heat generation, such as dielectric
heating, current carrying conductor, nuclear fuel rods with and without cladding, etc, were discussed.
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TABLE 5.4 Relations for steady state, one-dimensional conduction with internal heaf generation, and
constant k

*" fourtaces at Ty 80d.Ty).
Governing . .
differential a7 l.£+iif. =0 ar +1.£+ﬁ =0
aquation ar* r dr k arr rdr k

distribution

R 2 2 . In(
Temperature T=T1+ Jo A{z.m{L}[il _(L] ] CIO-T
4.k A r, .

Heat transfer

rate at the 2_ 2 ar(r)
gy (e -2 L Q.= — KA atr=r,
surlacs, @, (W) gz = 1) e T odr
ar(r)
Qoutar__k'A dr atr= fo
q,r2 r 0 g, 11, ) K
Toax — T (C g2 lagn|-2 1+ L] 14 ot Hle| —2un| 2|1
max w( ) i (f"} (ro] 4.k [.’]} (ﬂ] y
Comments L is length of cylinder, L is length of cylinder;
maximum temperature oceurs on the Pasition of maximum temperature
outside surface. is given by:
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r
2.nl =
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TABLE 5.5 Relations for steady state, one-dimensional conduction with internal heat generation and k
varying linearly with temperature as:

I

KT) = k(1 + A7)
kp= k(1 + BT T = (T + M2

Geometry. -~ .. .. | _ Temperalure digtribution, T(r)

_ 2 g, (R -
Solid cylinder T = 7‘ + \H% +Tw] *‘qg;—m?:r")

1 1.V g |(rY r
Hollow cylinder with inside surface insulated i = 7 + (;_3 + Tf} - 2—"}';(—0 [7‘] -2:n (EJ“‘
Hollow cylinder with outside surface insulated T = L S i - 9 12 1 2dn (ri) _(r_on -1

Y B i} e 2. Bk, r r
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TABLE 5.6 Relations for steady state, one-dimensicnal conduction with infernal heat generation, and

constant k

. . ) o’T 2 dT  q,

Govemning differential equation — =+ =g
g g darf r dr k
Temperature distribution TH=T,+ &(RZ e
Heat transter rate at the surface, Q, (W) %-z-RS-qg
q,-A°

Trax — T () 96 y
Comments Maximum lemperature occurs at the centre.

TABLE 5.7 Relations for steady state, one-dimensional conduction with internal heat generation and k
varying linearly with temperature as:

KT = k,(1+ A7)
km =k 01+ ﬁTm) ; Tm = (T‘t + T2)/2
. - . . a*T
Governing differential equation e +
Temperature distribution TN
Heat transfer rate at the surface, Q, (W) % -
Comments Maximum temperature occurs at the centre.

Several problems were solved and graphical representation of tempetature distribution using Mathcad was
highlighted. .

Finally, at the end of the chapter, the basic relations developed in this chapter for the aforesaid three
geometries, are tabulated for easy reference.

In the next chapter, we will study an important application of combined heat transfer of conduction and
convection, namely fins or extended surfaces.

Questions

1. Why are the cases with heat generation analysed? Give some practical examples.

2. Derive an expression for temperature distribution under one-dimensional steady state heat conduction with
heat generation of g, (W/ m® for the following system:
Flate of wall thickness L, thermal conductivity k, temperature being T, and T, at the two faces.

3. Pressure vessel for a nuclear reactor is approximated as a large flat plate of thickness L. Inside surface at x = 0 is

insulated. Outside surface at x = . is maintained at a uniform temperature T,. Gamma ray heating of the plate is
represented by:

gy (x) = g, exp{-ax), (W/ m”) where s 9, and 2 are constants.
(a}) Develop an expression for temperature distribution in the plate.
(b} Develop an expression for temperature at the insulated surface (x = 0)
{c} Develop an expression for the heat flux at the cuter surface, i.e. at x = L.
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4. In the above problem, if the surface at x = 0 is insulated and the surface at x = L dissipates heat by convection
with a convective heat transfer coefficient of / to a fluid at a temperature of T,, develop an expression for the
temperature distribution in the wall and the temperature of the insulated surface.

5. For solid cylinder of radius R, with heat generation g, (W/ m"}, surface temperature T,, and centre temperature
Ty show that temperature distribution is given by:

(T =T/ (T~ Ty)=1-(r/RY

6. Determine the one-dimensional temperature distribution T(r) for a solid cylinder of radius R, constant thermal
conductivity k, when the heat generation rate varies as:

(%) = q,11 - (r/R)}, (W/m>) where qg- 4o are constants. Boundary surface at r = R is kept at zero deg.C.

7. A hollow cylinder of inside radius r;, outside radius r,, has its inner and outer surfaces maintained at uniform
temperature T} and T,. Inside surface is insulated. Thermal conductivity k is constant and there is uniform heat
generation rate g {W/m3). Show that:

.r.2 2
T. . -T. ZE'_'. Ll _2m L_
max 2 4.k I f

8. Derive an expression for the variation of temperature along the radius for a solid sphere of constant k when
there is uniform heat generation in the solid. Temperature of the surface (r = R) is T,
9. How does the temperature distribution change if the thermal conductivity varies linearly with temperature as: :
KTY = k,(1 + AT), where k, and #are constants.
10. In a solid sphere of radius R, heat is generated at a rate of g, = g,{1 - {r/RY§, W/m®, where g, is a constant.
Boundary surface at r = R is maintained at a constant temperature T,.. Develop an expression for the steady state
temperature distribution, T(r).

Problems

Plane slab:

1. A plane wall 6 cm thick generates heat internally at the rate of 0.30 MW /m", One side of the wall is insulated,
and the other is exposed to an environment at 93°C. The convection heat transfer coefficient between the wall
and the environment is 570 W/m?K. Thermal conductivity of the wall is k = 21 W/{mK). Calculate the
maximum temperature in the wall.

2. Alarge, 3 cm thick plate (k = 18 W /(mK)} has a uniform heat generation rate of 5 MW /mt’. Both the sides of the
plate are exposed to an ambient at 25°C. Find out the maximum temperature in the plate and where it occurs.
Draw the temperature profile in the plate.

3. A 4 cm thick brass plate (k = 110 W/{m()), has uniform internal heat generation rate of 2 x 10° W/m?>. Its one
face is insulated and the other face is exposed to a stream of caoling air at 20°C flowing with a heat transfer
coefficient of 45 W/(m?C). Find the maximum temperature in the plate and where it occurs. Draw the
temperature profile.

4. A steel plate 25 mm thick, (k =50 W/ (mK)) has uniform volumetric heat generation rate of 50 MW/m>, Its two
surfaces are maintained at 150°C and 100°C. Neglecting end effects, determine:

(i} position and value of maximum temperatire
(if) heat flow rate from each surface.

Cylinder:

5. A SS. rod of 2 cm diameter carries an electric current of 900 A. Thermal and electrical conductivities of the rod
are 16 W/(mC) and 1.5 x 10* {Ohm cm)~!, respectively. What is the temperature difference between the fentre
line and periphery in steady state?

6. A copper wire 1 mm in diameter is insulated with a plastic to an outer diameter of 3 mm and is exposed to an
environment at 40°C. Find the maximum current carried by the wire in amperes without heating any point of
plastic above %0°C. Heat transfer coefficient from the outer surface of the plastic to the surrounding is 10 W/
{(m?K), k of plastic = 0.4 W/(mK), electrical conductivity of copper is 5 x 107 ohm ! m™!. Also, find the maximum
temperature of the wire. Given: k of copper = 380 W /(mK).

7. An electric cable of k = 20 W/{mC), 3 mm in diameter and 1 m long, has resistivity p = 70 ohm.cm. A current of
190 A flows through it and the wire is submerged in a fluid at a temperature of 90°C with a heat transfer
coefficient of 4000 W/{m?3C). Calculate the centre temperature of the wire.

8. A chemical reaction takes place in a packed bed (k = 0.5 W/{mC)) between two coaxial cylinders of radii 10 cm
and 35 cm. The inner surface is insulated and is maintained at 500°C. If the reaction produces a uniform heat
generation of 500 kW/m’, find the temperature of the outer surface.

-
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10.

11.

12.

13.

Sphere:
14.

15.

16.

17.

- An electric resistance wire of radius 1.5 mm has k = 25 W/(mC). It is heated by passing a current and heat

generation rate is 2 x 10° W/m® Determine the difference between the temperature at the centre line and the
surface if the surface is maintained at a constant temperature.

Consider a copper rod of radius 6 mm, k = 380 W/(mK) wherein heat is generated at a uniform rate of 4.5 x 108
W/m’, It is cooled by convection from its surface to ambient air at 30°C with k = 1800 W /(m’C). Determine the
surface temperature of the rod.

A hollow S.5. tube with r; = 25 mm, r, = 35 mm, k = 15 W/(mK), electrical resistivity o = 0.7 x 10° Ohm.m, has
uniform heat generation inside it, induced by an electric current. The heat is transferred by convection to air
flowing through the tube. If the air temperature is 400 K and the convective heat transfer coefficient is 150 W/
(m?K} and the maximum allowable temperature anywhere in the tube is 1400 K, determine the maximum allow-
able electric current. Assume that the tube surface is perfectly insulated. Draw the temperature profile in the
cylindrical shell.

A cylindrical rod, 6 cm radius, generates heat at a rate of 2.5 MW/m>. k of the material is 20 W/ (mK). It is clad
with a stainless steel layer of & mm thickness (k = 14 W/(mK), whose outer surface is cooled by a fluid at 180°C
with a heat transfer coefficient of 600 W/(m’K). Determine the temperature at the centre of the rod and also on
the outer surface and interface. Draw the temperature profile in both the rod and the cladding.

Rate of heat generation in a cylindrical fuel rod is given by:

4o = 4oll - (r/RY}, W/m? where R is the radius of the fuel rod.

(a) Calculate the temperature drop from the centre line to the surface of the rod, for the following data:
diameter of fuel rod = 25 mm, g, = 80 x 10° W/m®, k = 20 W/{mK).

{(b) If the heat removal rate from the outer surface of the rod is 0.2 MW/ m?, what would be the temperature
drop from the centre to the surface?

A homogeneous sphere of 9 cm diameter has a uniform heat generation rate of 5 x 107 W/m®. k of the material
is 15 W/(mK). If the surface temperature is maintained at 75°C,

{i} determine the temperature at the centre of the sphere

(ii} draw the temperature profile along the radius.
Assume steady state, one dimensional conduction.
A solid sphere of radius R = 6 mm, & = 25 W/{mC), has a uniform heat generation rate of 2500 W/m®. Heat is
carried away by convection at its outer surface to ambient air at 30°C with a heat transfer coefficient of 25 W/
(m?C). Determine the steacly state temperature at the centre and outer surface of the sphere.
Average heat generation during ripening of oranges is estimated as 325 W/m>, Assuming the orange to be a
sphere of diameter 10 cm, and k = 0.15 W/(mC), find out the centre temperature of the orange if the surface is
maintained at 10°C. Draw the temperature profile along the radius.
A hollow sphere of 10 cm ID, 20 cm OD, is made of a materiat of k = 18 W/(mK). Heat is generated internally at
a uniform rate of 3 MW /m’. Inside surface of the sphere is insulated. Develop an expression for the temperature
profile in the sphere and determine the maximum temperature in the material, if the outside surface
temperature is maintained at 300°C. Draw the temperature profile in the shell.
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